化学
聚ADP核糖聚合酶
细胞凋亡
生物
药理学
程序性细胞死亡
免疫印迹
氧化磷酸化
氧化应激
生物化学
谷胱甘肽
活性氧
细胞生物学
脂质过氧化
分子生物学
聚合酶
酶
基因
作者
Guangwei Chen,Chang Li,Ling Zhang,Jiehong Yang,Huanhuan Meng,Haitong Wan,Yu He
标识
DOI:10.1016/j.freeradbiomed.2021.12.262
摘要
Ferroptosis and parthanatos are two types of programmed cell death associated with cerebral ischemia. There is a sizeable interest in seeking chemical components for the regulation of ferroptosis and parthanatos. Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) mitigated cell death caused by oxidative stress due to antioxidant capacity, yet the mechanism is still uncertain. Thus, we investigated whether HSYA and AHSYB prevent death through these two pathways with the aim to elucidate their potential protective mechanisms of cerebral ischemia. In this study, oxidative stress model was established by treating PC12 cells with oxygen glucose deprivation and reperfusion (OGD/R). Cellular functions and signaling pathways were analyzed in PC12 cells using cell counting kit-8 (CCK-8), flow cytometry, ELISA, iron assay kit, transmission electron microscopy (TEM), immunofluorescence, and western blot analysis. And the research proved HSYA and AHSYB protected cells from oxidative stress. The phenomenon is associated with ferroptosis and parthanatos. HSYA and AHSYB upregulated cystine/glutamate antiporter system xc- (system xc-) and glutathione peroxidase 4 (GPX4), returned the levels of GSH/GSSG ratio, reactive oxygen species (ROS) and iron ion, as well as alleviated lipid peroxidation. By reason of reducing ROS, HSYA and AHSYB restrained poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, reduced the production of excess poly(ADP-ribose) (PAR) polymer and apoptosis inducing factor (AIF) nuclear translocation. The results suggested that HSYA and AHSYB limited ferroptosis and parthanatos to alleviate oxidative stress in PC12 cells. These findings may have implications for improving understanding of how drugs reduce oxidative stress and develop new strategies for treating degenerative diseases such as cerebral ischemia.
科研通智能强力驱动
Strongly Powered by AbleSci AI