亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using CGAN to Deal with Class Imbalance and Small Sample Size in Cybersecurity Problems

计算机科学 样品(材料) 样本量测定 过程(计算) 班级(哲学) 集合(抽象数据类型) 领域(数学分析) 数据挖掘 入侵检测系统 计算机安全 机器学习 人工智能 统计 数学 数学分析 化学 色谱法 程序设计语言 操作系统
作者
Ehsan Nazari,Paula Branco,Guy-Vincent Jourdan
标识
DOI:10.1109/pst52912.2021.9647807
摘要

Predictive modelling in cybersecurity domains usually involves dealing with complex settings. The class imbalance problem is a well-know challenge typically present in the cybersecurity domain. For instance, in a real-world intrusion detection scenario, the number of attacks is expected to be a a very small percentage of the normal cases. Moreover, in these applications, the number of available examples labelled is also small due to the complexity and cost of the labelling process: teams of domain experts need to be involved in the process which becomes expensive, time consuming and prone to errors. To address these problems is critical to the success of predictive modelling in cybersecurity applications. In this paper we tackle the class imbalance and small sample size through the use of a CGAN-based up-sampling procedure. We carry out an extensive set of experiments that show the positive impact of applying this solution to address the class imbalance and small sample size problems. A large data repository is built and freely provided to the research community containing 114 binary datasets based on real-world cybersecurity problems that are generated with diversified levels of imbalance and sample size. Our experiments show a clear advantage of using the CGAN-based up-sampling method specially for situations where the sample size is small and there is a large imbalance between the problem classes. In the most critical scenarios associated with extreme rarity and very small sample size, an impressive performance boost is achieved. We also explore the behaviour of this approach when the presence of these problems is less marked and we found that, while CGAN-based up-sampling is not able to further improve the minority class performance, it also has no negative impact. Thus, it is a safe to use solution, also in these scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛八先生完成签到,获得积分10
9秒前
嗨好发布了新的文献求助10
12秒前
14秒前
lrz发布了新的文献求助10
15秒前
Haixia完成签到,获得积分10
46秒前
奶盐牙牙乐完成签到 ,获得积分10
57秒前
HHHH完成签到,获得积分10
58秒前
lrz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
杨哈哈发布了新的文献求助10
1分钟前
fransiccarey完成签到,获得积分10
1分钟前
华仔应助杨哈哈采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
真一松发布了新的文献求助10
2分钟前
慕青应助等待泥猴桃采纳,获得10
2分钟前
英姑应助真一松采纳,获得10
2分钟前
3分钟前
3分钟前
ldysaber完成签到,获得积分0
3分钟前
毛大驴发布了新的文献求助10
3分钟前
qinhan完成签到 ,获得积分10
3分钟前
李爱国应助毛大驴采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
斯文败类应助等待泥猴桃采纳,获得10
5分钟前
杨哈哈发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
心晴发布了新的文献求助10
5分钟前
5分钟前
桐桐应助面包战士采纳,获得10
5分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319397
求助须知:如何正确求助?哪些是违规求助? 2950533
关于积分的说明 8552225
捐赠科研通 2627728
什么是DOI,文献DOI怎么找? 1437841
科研通“疑难数据库(出版商)”最低求助积分说明 666440
邀请新用户注册赠送积分活动 652427