数学
单调多边形
偏微分方程
人工神经网络
维数之咒
极限(数学)
常微分方程
颂歌
应用数学
椭圆偏微分方程
数学分析
微分方程
计算机科学
人工智能
几何学
统计
作者
Samuel N. Cohen,Deqing Jiang,Justin Sirignano
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:2
标识
DOI:10.48550/arxiv.2203.17128
摘要
Solving high-dimensional partial differential equations (PDEs) is a major challenge in scientific computing. We develop a new numerical method for solving elliptic-type PDEs by adapting the Q-learning algorithm in reinforcement learning. Our "Q-PDE" algorithm is mesh-free and therefore has the potential to overcome the curse of dimensionality. Using a neural tangent kernel (NTK) approach, we prove that the neural network approximator for the PDE solution, trained with the Q-PDE algorithm, converges to the trajectory of an infinite-dimensional ordinary differential equation (ODE) as the number of hidden units $\rightarrow \infty$. For monotone PDE (i.e. those given by monotone operators, which may be nonlinear), despite the lack of a spectral gap in the NTK, we then prove that the limit neural network, which satisfies the infinite-dimensional ODE, converges in $L^2$ to the PDE solution as the training time $\rightarrow \infty$. More generally, we can prove that any fixed point of the wide-network limit for the Q-PDE algorithm is a solution of the PDE (not necessarily under the monotone condition). The numerical performance of the Q-PDE algorithm is studied for several elliptic PDEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI