Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE

自编码 人工智能 计算机科学 机器学习 深度学习 入侵检测系统 钥匙(锁) 数据建模 人工神经网络 数据挖掘 数据库 计算机安全
作者
Chang Liu,Ruslan Antypenko,Iryna Sushko,Oksana Zakharchenko
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:71 (2): 1000-1010 被引量:40
标识
DOI:10.1109/tr.2022.3164877
摘要

Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and deep learning to network IDSs to cope with complex and changing network environments and to automatically extract key features from high-dimensional feature data. However, in the real industrial IoT environment, data imbalance is the main factor that affects the performance of the deep-learning-based IDS. In this article, we study the network intrusion detection model based on data level. Three data-based research schemes are constructed step by step in this article, which are a data augmentation scheme based on the variational autoencoder (VAE), a data-balancing scheme based on the conditional VAE, and a data-balancing scheme based on random undersampling and conditional VAE. The three data-level-based schemes are combined with the deep-learning-based IDS. In this article, we build experiments based on the CSE-CIC-IDS2018 dataset to verify the effectiveness of three data processing schemes. After data enhancement through the third scheme, the Macro-F1-score of the convolutional-neural-network-based IDS model improved by 3.75% and the Macro-F1-score of the gated-recurrent-unit-based IDS model improved by 5.32%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果巧蕊完成签到 ,获得积分10
刚刚
脑洞疼应助SDS采纳,获得10
刚刚
JamesPei应助Guo采纳,获得20
1秒前
马保国123完成签到,获得积分10
1秒前
1秒前
1秒前
迷你的冰巧完成签到,获得积分10
1秒前
万能图书馆应助学术蝗虫采纳,获得10
2秒前
慕青应助aurora采纳,获得30
2秒前
Jasper应助满意的盼夏采纳,获得10
2秒前
yitang完成签到,获得积分10
4秒前
www完成签到,获得积分10
4秒前
zhenzhen发布了新的文献求助10
4秒前
飞羽发布了新的文献求助10
4秒前
江沅完成签到 ,获得积分10
4秒前
5秒前
5秒前
Sean完成签到,获得积分10
5秒前
兜兜完成签到 ,获得积分10
5秒前
羊羊羊发布了新的文献求助10
6秒前
Rui完成签到,获得积分10
6秒前
bigger.b完成签到,获得积分10
6秒前
Nerissa完成签到,获得积分10
6秒前
Dr.Tang发布了新的文献求助10
6秒前
6秒前
田様应助笑点低蜜蜂采纳,获得10
6秒前
英俊的铭应助么系么系采纳,获得10
7秒前
ding应助寒冷的奇异果采纳,获得10
7秒前
lx发布了新的文献求助10
8秒前
舒适念真发布了新的文献求助10
8秒前
沉默哈密瓜完成签到 ,获得积分10
9秒前
身处人海完成签到,获得积分10
9秒前
Singularity应助暴躁的安柏采纳,获得10
9秒前
Singularity应助暴躁的安柏采纳,获得10
9秒前
大模型应助皓月千里采纳,获得10
9秒前
9秒前
Jim完成签到,获得积分10
10秒前
尼亚吉拉发布了新的文献求助10
10秒前
sternen发布了新的文献求助30
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678