Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老福贵儿应助chun采纳,获得10
刚刚
silk发布了新的文献求助10
1秒前
1秒前
bravo完成签到,获得积分0
1秒前
iris2333发布了新的文献求助10
2秒前
2秒前
可爱的函函应助suzy采纳,获得10
3秒前
机智涵阳完成签到,获得积分10
4秒前
4秒前
鲤鱼凛发布了新的文献求助10
5秒前
科研通AI6应助星河采纳,获得10
5秒前
abrin08发布了新的文献求助10
7秒前
8秒前
共享精神应助Wangle采纳,获得10
8秒前
yaya完成签到,获得积分10
8秒前
8秒前
zzzzz完成签到,获得积分10
9秒前
岚12完成签到 ,获得积分10
9秒前
hongjing发布了新的文献求助10
9秒前
黄则已发布了新的文献求助10
10秒前
江洋大盗发布了新的文献求助10
11秒前
威武寄翠完成签到,获得积分10
12秒前
12秒前
小T完成签到,获得积分10
15秒前
老福贵儿应助核桃小小苏采纳,获得10
15秒前
佳节完成签到,获得积分10
15秒前
无赖真菌发布了新的文献求助10
15秒前
iris2333发布了新的文献求助10
17秒前
19秒前
lmk完成签到 ,获得积分10
21秒前
abrin08完成签到,获得积分10
21秒前
22秒前
08龙完成签到,获得积分10
24秒前
Akim应助呆萌的觅松采纳,获得10
24秒前
斯文败类应助随便取采纳,获得10
24秒前
大模型应助超表面采纳,获得10
25秒前
WB87应助快乐曼荷采纳,获得10
25秒前
粗犷的灵松完成签到 ,获得积分10
25秒前
叶艳完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537308
求助须知:如何正确求助?哪些是违规求助? 4624842
关于积分的说明 14593552
捐赠科研通 4565384
什么是DOI,文献DOI怎么找? 2502279
邀请新用户注册赠送积分活动 1480966
关于科研通互助平台的介绍 1452190