Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助大婷子采纳,获得10
刚刚
ss发布了新的文献求助10
刚刚
刚刚
晚意发布了新的文献求助10
刚刚
刚刚
Liang完成签到,获得积分10
1秒前
1秒前
JINtian发布了新的文献求助10
1秒前
小二郎应助niko采纳,获得10
1秒前
小蘑菇应助niko采纳,获得10
1秒前
Dlyar1125完成签到,获得积分10
1秒前
共享精神应助niko采纳,获得10
1秒前
1秒前
南宫清涟应助niko采纳,获得10
1秒前
在水一方应助niko采纳,获得10
2秒前
南宫清涟应助niko采纳,获得10
2秒前
可爱的函函应助niko采纳,获得10
2秒前
Stella发布了新的文献求助50
2秒前
我是老大应助niko采纳,获得10
2秒前
南宫清涟应助niko采纳,获得10
2秒前
虚心的爆米花完成签到,获得积分10
2秒前
科研通AI6应助niko采纳,获得10
2秒前
junfeiwang发布了新的文献求助10
2秒前
abc完成签到,获得积分10
2秒前
西西完成签到,获得积分20
2秒前
2秒前
大知闲闲发布了新的文献求助10
2秒前
3秒前
Vixerunt发布了新的文献求助10
3秒前
情怀应助hjz采纳,获得10
3秒前
俏皮道之完成签到,获得积分10
3秒前
草壁米发布了新的文献求助30
3秒前
5秒前
5秒前
5秒前
植物发布了新的文献求助10
5秒前
6秒前
失眠的龙猫完成签到,获得积分10
6秒前
共产主义接班人完成签到,获得积分10
7秒前
平常幻灵完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049