Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIU发布了新的文献求助10
刚刚
刚刚
李知恩完成签到,获得积分10
1秒前
1秒前
EthanChan完成签到,获得积分10
1秒前
1秒前
野性的孤菱完成签到,获得积分10
1秒前
茂密的头发完成签到,获得积分10
2秒前
2秒前
Hongsong发布了新的文献求助10
3秒前
勤恳马里奥完成签到,获得积分0
4秒前
4秒前
yzy发布了新的文献求助10
4秒前
5秒前
5秒前
科目三应助AA采纳,获得10
5秒前
5秒前
Elaine发布了新的文献求助10
5秒前
Elaine发布了新的文献求助10
5秒前
Elaine发布了新的文献求助10
5秒前
Elaine发布了新的文献求助10
5秒前
roy完成签到 ,获得积分10
6秒前
Akashi发布了新的文献求助10
6秒前
李爱国应助茂密的头发采纳,获得10
6秒前
张时婕完成签到 ,获得积分10
6秒前
小胖鱼发布了新的文献求助10
6秒前
不许焦绿o完成签到,获得积分10
7秒前
pcr163应助zhanzhanzhan采纳,获得50
7秒前
7秒前
SweepingMonk应助EthanChan采纳,获得10
7秒前
爆米花应助二豆子0采纳,获得10
8秒前
科研通AI5应助Mian采纳,获得10
8秒前
CodeCraft应助酒九采纳,获得10
8秒前
星辰大海应助不喝可乐采纳,获得10
8秒前
8秒前
9秒前
WJ发布了新的文献求助10
9秒前
JamesPei应助落寞的紫山采纳,获得10
9秒前
平常的不平完成签到,获得积分10
10秒前
系统提示发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740