Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
1秒前
1秒前
景清完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
WLWLW发布了新的文献求助30
3秒前
3秒前
JamesPei应助now采纳,获得10
4秒前
4秒前
维时完成签到,获得积分10
4秒前
K2L完成签到,获得积分10
6秒前
wdy337发布了新的文献求助10
7秒前
火炉猫猫完成签到,获得积分10
7秒前
果果发布了新的文献求助30
7秒前
11发布了新的文献求助10
7秒前
清河完成签到,获得积分10
8秒前
学术垃圾制造者完成签到,获得积分10
8秒前
南风上北山完成签到,获得积分10
8秒前
9秒前
9秒前
专注的轻完成签到,获得积分10
9秒前
zzy完成签到 ,获得积分10
9秒前
sxs完成签到 ,获得积分10
9秒前
又夏完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
lizhaoyu应助xiaoliu采纳,获得30
11秒前
wf完成签到,获得积分10
11秒前
红黄蓝完成签到 ,获得积分10
11秒前
张牧之完成签到 ,获得积分10
12秒前
12秒前
失眠的汽车完成签到,获得积分10
12秒前
Ezio_sunhao完成签到,获得积分10
12秒前
江三村发布了新的文献求助10
13秒前
nqj发布了新的文献求助30
13秒前
科研通AI2S应助zxzb采纳,获得10
13秒前
now完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044