Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
9527King发布了新的文献求助10
1秒前
SZY发布了新的文献求助10
1秒前
1秒前
GGGT关注了科研通微信公众号
2秒前
无非发布了新的文献求助10
2秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
2秒前
林小鱼发布了新的文献求助10
3秒前
豪士赋完成签到,获得积分10
3秒前
4秒前
躞蹀发布了新的文献求助10
4秒前
失眠的耳机完成签到,获得积分10
5秒前
科研通AI2S应助zzb采纳,获得10
5秒前
6秒前
Zx_1993应助忽而今夏采纳,获得30
6秒前
善良的灵羊完成签到 ,获得积分10
6秒前
木子木子粒完成签到 ,获得积分10
8秒前
高挑的萝发布了新的文献求助10
9秒前
crazyfish完成签到,获得积分10
10秒前
10秒前
11秒前
情怀应助拾起地上六便士采纳,获得10
12秒前
高宇晖发布了新的文献求助10
12秒前
未道完成签到,获得积分10
12秒前
13秒前
科研通AI6应助djbj2022采纳,获得10
13秒前
科研通AI6应助kids采纳,获得10
13秒前
古月发布了新的文献求助10
14秒前
15秒前
zzb完成签到,获得积分10
15秒前
芽芽完成签到 ,获得积分10
17秒前
zzb发布了新的文献求助10
17秒前
18秒前
小情绪发布了新的文献求助10
19秒前
科研通AI6应助9527King采纳,获得10
19秒前
20秒前
无非完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965