Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈丞澄发布了新的文献求助10
1秒前
蓦然发布了新的文献求助10
4秒前
4秒前
YCG完成签到 ,获得积分10
5秒前
竹筏过海应助淡然天问采纳,获得30
5秒前
浮游应助淡然天问采纳,获得10
5秒前
领导范儿应助柔弱的冬天采纳,获得30
6秒前
落后翠柏发布了新的文献求助10
7秒前
不安的成协完成签到,获得积分10
8秒前
8秒前
9秒前
长情听南发布了新的文献求助10
10秒前
锦慜发布了新的文献求助10
10秒前
顾矜应助蓦然采纳,获得10
11秒前
可爱的函函应助panda采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
李昕123发布了新的文献求助10
12秒前
12秒前
吧唧完成签到,获得积分10
13秒前
123456完成签到,获得积分10
14秒前
大模型应助wjy321采纳,获得10
14秒前
云漫山发布了新的文献求助10
14秒前
Ruby应助jsss采纳,获得10
15秒前
15秒前
16秒前
wise111发布了新的文献求助30
16秒前
尊敬的小凡完成签到,获得积分10
16秒前
xbx1991发布了新的文献求助30
16秒前
充电宝应助阿良采纳,获得10
18秒前
自信大白菜真实的钥匙完成签到,获得积分10
18秒前
wyh应助活泼溪流采纳,获得30
18秒前
李昕123完成签到,获得积分10
19秒前
19秒前
刺五加完成签到 ,获得积分10
20秒前
852应助Eom采纳,获得10
20秒前
21秒前
21秒前
caoyuya123完成签到 ,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704