Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review

灵活性(工程) 计算机科学 风险分析(工程) 多样性(控制论) 管理科学 可再生能源 运筹学 能源规划 投资决策 工程类 生产(经济) 业务 经济 管理 人工智能 电气工程 宏观经济学
作者
Soheil Mohseni,Alan C. Brent,Scott Kelly,Will N. Browne
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:158: 112095-112095 被引量:50
标识
DOI:10.1016/j.rser.2022.112095
摘要

The parametric uncertainties inherent in the models of renewable and sustainable energy systems (RSESs) make the associated decision-making processes of integrated resource operation, planning, and designing profoundly complex. Accordingly, intelligent energy management strategies are recognised as an effective intervention to efficiently accommodate the variability inherent in various input data and integrate distributed demand-side flexibility resources. To identify the key methodological and content gaps in the area of stochastic dispatch and planning optimisation of RSESs in the presence of responsive loads, this paper systematically reviews and synthetically analyses 252 relevant peer-reviewed academic articles. The review reveals that academic studies have utilised a wide variety of methods for the joint quantification of uncertainties and procurement of demand response services, while optimally designing and scheduling RSESs. However, to minimise simulation-to-reality gaps, research is needed into more integrated energy optimisation models that simultaneously characterise a broader spectrum of problem-inherent uncertainties and make behaviourally-founded use of flexible demand-side resources. More specifically, the review finds that while the research in this area is rich in thematic scope, it is commonly associated with strong simplifying assumptions that disconnect the corresponding approaches from reality, and thereby obscure the real challenges of transferring simulations into the real world. Accordingly, based on the descriptive analyses conducted and knowledge gaps identified, the paper provides useful insights into myriad possibilities for new research to more effectively utilise the potential of responsive loads, whilst simultaneously characterising the most salient problem-inherent parametric sources of uncertainty, during the investment planning and operational phases of RSESs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maodoudou发布了新的文献求助10
刚刚
追梦小帅完成签到,获得积分10
刚刚
Winks完成签到,获得积分10
1秒前
1秒前
神奇海螺完成签到,获得积分10
1秒前
kai完成签到 ,获得积分10
2秒前
丘比特应助科研工作者采纳,获得10
2秒前
iufan发布了新的文献求助10
2秒前
马骁发布了新的文献求助10
2秒前
3秒前
彭佳乐发布了新的文献求助10
3秒前
风中的双完成签到 ,获得积分10
3秒前
4秒前
空白完成签到,获得积分10
4秒前
5秒前
红书包发布了新的文献求助10
5秒前
ShuangWeng应助周星星采纳,获得10
5秒前
思源应助笑点低的凡梦采纳,获得10
5秒前
忙里偷闲完成签到,获得积分10
6秒前
小九不太乖完成签到,获得积分10
6秒前
GAO发布了新的文献求助10
7秒前
leo完成签到 ,获得积分10
7秒前
8秒前
doclarrin完成签到 ,获得积分10
8秒前
情怀应助黄花采纳,获得10
8秒前
dy完成签到,获得积分10
8秒前
George Will完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
FR给光亮雪兰的求助进行了留言
10秒前
11秒前
Jasper应助GAO采纳,获得10
11秒前
向连虎完成签到,获得积分20
11秒前
maodoudou完成签到,获得积分10
12秒前
1024完成签到,获得积分10
12秒前
Xbro发布了新的文献求助10
12秒前
戴遇好完成签到 ,获得积分0
12秒前
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813