Path-dependent dynamics induced by rewiring networks of inertial oscillators

多稳态 拓扑(电路) 同步(交流) 同步网络 网络拓扑 Kuramoto模型 计算机科学 惯性 网络动力学 惯性参考系 物理 控制理论(社会学) 数学 非线性系统 经典力学 人工智能 控制(管理) 量子力学 组合数学 离散数学 操作系统
作者
William Qian,Lia Papadopoulos,Zhixin Lu,Keith A. Kroma-Wiley,Fabio Pasqualetti,Dani S. Bassett
出处
期刊:Physical review 卷期号:105 (2) 被引量:3
标识
DOI:10.1103/physreve.105.024304
摘要

In networks of coupled oscillators, it is of interest to understand how interaction topology affects synchronization. Many studies have gained key insights into this question by studying the classic Kuramoto oscillator model on static networks. However, new questions arise when the network structure is time varying or when the oscillator system is multistable, the latter of which can occur when an inertial term is added to the Kuramoto model. While the consequences of evolving topology and multistability on collective behavior have been examined separately, real-world systems such as gene regulatory networks and the brain may exhibit these properties simultaneously. It is thus relevant to ask how time-varying network connectivity impacts synchronization in systems that can exhibit multistability. To address this question, we study how the dynamics of coupled Kuramoto oscillators with inertia are affected when the topology of the underlying network changes in time. We show that hysteretic synchronization behavior in networks of coupled inertial oscillators can be driven by changes in connection topology alone. Moreover, we find that certain fixed-density rewiring schemes induce significant changes to the level of global synchrony that remain even after the network returns to its initial configuration, and we show that these changes are robust to a wide range of network perturbations. Our findings highlight that the specific progression of network topology over time, in addition to its initial or final static structure, can play a considerable role in modulating the collective behavior of systems evolving on complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼小丸子完成签到 ,获得积分10
刚刚
r921192发布了新的文献求助10
刚刚
我不看月亮完成签到,获得积分20
2秒前
卤蛋发布了新的文献求助10
2秒前
3秒前
善学以致用应助Jolene66采纳,获得10
3秒前
俭朴的红牛完成签到,获得积分10
3秒前
Owen应助全圆佑的猫猫采纳,获得10
3秒前
nayuta发布了新的文献求助10
4秒前
6秒前
6秒前
dd完成签到,获得积分20
7秒前
健忘的初翠完成签到,获得积分10
7秒前
8秒前
过冷风应助大气早晨采纳,获得10
8秒前
不才发布了新的文献求助10
8秒前
慕青应助夕夕成玦采纳,获得10
8秒前
沉默鲜花应助否认冶游史采纳,获得10
8秒前
9秒前
9秒前
9秒前
sxj完成签到,获得积分10
9秒前
9秒前
jxc完成签到,获得积分10
10秒前
烟花应助dch采纳,获得10
10秒前
Candice应助r921192采纳,获得10
10秒前
10秒前
youyou糍粑发布了新的文献求助10
12秒前
13秒前
dd发布了新的文献求助10
13秒前
一只科研pig完成签到 ,获得积分10
14秒前
不吃碳水发布了新的文献求助10
14秒前
长孙友容发布了新的文献求助10
15秒前
15秒前
unicorn完成签到,获得积分10
16秒前
悦耳迎蕾发布了新的文献求助10
16秒前
16秒前
Aster发布了新的文献求助10
17秒前
17秒前
sxj发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412516
求助须知:如何正确求助?哪些是违规求助? 3015217
关于积分的说明 8869123
捐赠科研通 2702867
什么是DOI,文献DOI怎么找? 1481929
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733