An intelligent facial expression recognition system with emotion intensity classification

面部表情 计算机科学 卷积神经网络 价(化学) 人工智能 惊喜 厌恶 情绪分类 模式识别(心理学) 特征提取 语音识别 机器学习 愤怒 心理学 物理 精神科 社会心理学 量子力学
作者
Suchitra Saxena,Shikha Tripathi,T. S. B. Sudarshan
出处
期刊:Cognitive Systems Research [Elsevier BV]
卷期号:74: 39-52 被引量:16
标识
DOI:10.1016/j.cogsys.2022.04.001
摘要

Facial expressions play a crucial role in emotion recognition as compared to other modalities. In this work, an integrated network, which is capable of recognizing emotion intensity levels from facial images in real time using deep learning technique is proposed. The cognitive study of facial expressions based on expression intensity levels are useful in applications such as healthcare, coboting, Industry 4.0 etc. This work proposes to augment emotion recognition with 2 other important parameters, valence and emotion intensity. This helps in better automated responses by a machine to an emotion. The valence model helps in classifying emotion as positive and negative emotions and discrete model classifies emotions as happy, anger, disgust, surprise and neutral state using Convolution Neural Network (CNN). Feature extraction and classification are carried out using CMU Multi-PIE database. The proposed architecture achieves 99.1% and 99.11% accuracy for valence model and discrete model respectively for offline image data with 5-fold cross validation. The average accuracy achieved in real time for valance model and discrete model is 95% & 95.6% respectively. Also, this work contributes to build a new database using facial landmarks, with three intensity levels of facial expressions which helps to classify expressions into low, mild and high intensities. The performance is also tested for different classifiers. The proposed integrated system is configured for real time Human Robot Interaction (HRI) applications on a test bed consisting of Raspberry Pi and RPA platform to assess its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ommphey发布了新的文献求助100
1秒前
leranlily完成签到,获得积分10
1秒前
MANGMANG发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Jasper应助Yuanyuan采纳,获得10
3秒前
李物发布了新的文献求助20
4秒前
quhayley应助樊珩采纳,获得10
7秒前
zhi发布了新的文献求助10
7秒前
Nikola完成签到 ,获得积分10
7秒前
8秒前
英吉利25发布了新的文献求助10
8秒前
11秒前
12秒前
N型半导体发布了新的文献求助10
13秒前
小二郎应助wwpedd采纳,获得30
13秒前
QIU关闭了QIU文献求助
13秒前
回家睡觉发布了新的文献求助30
14秒前
凶狠的惜海完成签到,获得积分20
14秒前
15秒前
媛桃子完成签到 ,获得积分10
15秒前
英姑应助孟古采纳,获得10
18秒前
LCW发布了新的文献求助10
18秒前
薄荷花完成签到,获得积分10
19秒前
领导范儿应助Ronnie采纳,获得10
19秒前
木头人应助白衣轻叹采纳,获得10
19秒前
共享精神应助lalala采纳,获得10
20秒前
21秒前
爆米花应助wyt采纳,获得10
22秒前
西西完成签到,获得积分20
23秒前
李爱国应助joinn采纳,获得10
23秒前
橙子完成签到,获得积分10
24秒前
西西发布了新的文献求助10
26秒前
熬夜大王发布了新的文献求助10
26秒前
26秒前
28秒前
28秒前
雪梨关注了科研通微信公众号
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303