Computer-aided Recognition Based on Decision-level Multimodal Fusion for Depression.

计算机科学 人工智能 脑电图 机器学习 传感器融合 模式识别(心理学) 分类器(UML)
作者
Bingtao Zhang,Hanshu Cai,Yubo Song,Tao Lei,Yanlin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2022.3165640
摘要

Aiming at the problem of depression recognition, this paper proposes a computer-aided recognition framework based on decision-level multimodal fusion. In Song Dynasty of China, the idea of multimodal fusion was contained in "one gets different impressions of a mountain when viewing it from the front or sideways, at a close range or from afar" poetry. Objective and comprehensive analysis of depression can more accurately restore its essence, and multimodal can represent more information about depression compared to single modal. Linear electroencephalography (EEG) features based on adaptive auto regression (AR) model and typical nonlinear EEG features are extracted. EEG features related to depression and graph metric features in depression related brain regions are selected as the data basis of multimodal fusion to ensure data diversity. Based on the theory of multi-agent cooperation, the computer-aided depression recognition model of decision-level is realized. The experimental data comes from 24 depressed patients and 29 healthy controls (HC). The results of multi-group controlled trials show that compared with single modal or independent classifiers, the decision-level multimodal fusion method has a stronger ability to recognize depression, and the highest accuracy rate 92.13% was obtained. In addition, our results suggest that improving the brain region associated with information processing can help alleviate and treat depression. In the field of classification and recognition, our results clarify that there is no universal classifier suitable for any condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路尔珍完成签到 ,获得积分10
刚刚
Kristine完成签到 ,获得积分10
1秒前
嗯哼应助温以凡采纳,获得20
1秒前
2秒前
2秒前
无疆_行者发布了新的文献求助10
3秒前
大江发布了新的文献求助10
3秒前
4秒前
乐观完成签到,获得积分20
5秒前
6秒前
6秒前
aaaaa等die完成签到,获得积分10
7秒前
健壮含海发布了新的文献求助30
7秒前
9秒前
windows完成签到,获得积分10
9秒前
yangbo666发布了新的文献求助10
9秒前
香蕉奎应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
紫竹应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得30
10秒前
鱼鳞飞飞应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
迷路旭发布了新的文献求助10
11秒前
陈陈欲睡完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
zyd完成签到,获得积分10
14秒前
14秒前
浅尝离白应助windows采纳,获得30
15秒前
别当真完成签到 ,获得积分10
17秒前
慕青应助艺玲采纳,获得10
17秒前
失重心跳发布了新的文献求助10
18秒前
18秒前
丫丫发布了新的文献求助10
18秒前
调皮老头发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154458
求助须知:如何正确求助?哪些是违规求助? 2805352
关于积分的说明 7864477
捐赠科研通 2463541
什么是DOI,文献DOI怎么找? 1311399
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821