Computer-aided Recognition Based on Decision-level Multimodal Fusion for Depression.

计算机科学 人工智能 脑电图 机器学习 传感器融合 模式识别(心理学) 分类器(UML)
作者
Bingtao Zhang,Hanshu Cai,Yubo Song,Tao Lei,Yanlin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2022.3165640
摘要

Aiming at the problem of depression recognition, this paper proposes a computer-aided recognition framework based on decision-level multimodal fusion. In Song Dynasty of China, the idea of multimodal fusion was contained in "one gets different impressions of a mountain when viewing it from the front or sideways, at a close range or from afar" poetry. Objective and comprehensive analysis of depression can more accurately restore its essence, and multimodal can represent more information about depression compared to single modal. Linear electroencephalography (EEG) features based on adaptive auto regression (AR) model and typical nonlinear EEG features are extracted. EEG features related to depression and graph metric features in depression related brain regions are selected as the data basis of multimodal fusion to ensure data diversity. Based on the theory of multi-agent cooperation, the computer-aided depression recognition model of decision-level is realized. The experimental data comes from 24 depressed patients and 29 healthy controls (HC). The results of multi-group controlled trials show that compared with single modal or independent classifiers, the decision-level multimodal fusion method has a stronger ability to recognize depression, and the highest accuracy rate 92.13% was obtained. In addition, our results suggest that improving the brain region associated with information processing can help alleviate and treat depression. In the field of classification and recognition, our results clarify that there is no universal classifier suitable for any condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助下课了吧采纳,获得10
刚刚
刚刚
刚刚
好的完成签到,获得积分20
1秒前
蜂蜜不是糖完成签到 ,获得积分10
1秒前
狮子最爱吃芒果完成签到,获得积分10
1秒前
2秒前
3秒前
尘雾完成签到,获得积分10
3秒前
澜生发布了新的文献求助10
4秒前
leekle完成签到,获得积分10
5秒前
shengChen发布了新的文献求助10
5秒前
自信鞯发布了新的文献求助10
6秒前
江北小赵完成签到,获得积分10
6秒前
6秒前
6秒前
clock完成签到 ,获得积分10
6秒前
虫二先生完成签到 ,获得积分10
6秒前
甜甜的难敌完成签到,获得积分10
7秒前
7秒前
8秒前
小潘同学完成签到,获得积分10
8秒前
8秒前
科研通AI5应助传统的海露采纳,获得10
9秒前
学术刘亦菲完成签到,获得积分10
9秒前
成就的烧鹅完成签到,获得积分20
9秒前
10秒前
dd发布了新的文献求助10
10秒前
luoshi应助leon采纳,获得30
11秒前
11秒前
wang完成签到,获得积分10
11秒前
可爱的函函应助hu采纳,获得10
11秒前
11秒前
我测你码关注了科研通微信公众号
12秒前
下课了吧发布了新的文献求助10
12秒前
jy发布了新的文献求助10
12秒前
绘梨衣完成签到,获得积分10
13秒前
数据线完成签到,获得积分10
13秒前
完美世界应助甜甜的难敌采纳,获得30
14秒前
满堂花醉三千客完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794