Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis With Auxiliary Clinical Variables and Incomplete Multi-Modality Data.

模态(人机交互) 过度拟合 判别式 计算机科学 特征(语言学) 人工智能 模式 代表(政治) 关系(数据库) 特征学习 机器学习 模式识别(心理学) 数据挖掘
作者
Zhenyuan Ning,Denghui Du,Chao Tu,Qianjin Feng,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 186-198
标识
DOI:10.1109/tmi.2021.3108802
摘要

The integrative analysis of complementary phenotype information contained in multi-modality data (e.g., histopathological images and genomic data) has advanced the prognostic evaluation of cancers. However, multi-modality based prognosis analysis confronts two challenges: (1) how to explore underlying relations inherent in different modalities data for learning compact and discriminative multi-modality representations; (2) how to take full consideration of incomplete multi-modality data for constructing accurate and robust prognostic model, since a host of complete multi-modality data are not always available. Additionally, many existing multi-modality based prognostic methods commonly ignore relevant clinical variables (e.g., grade and stage), which, however, may provide supplemental information to promote the performance of model. In this paper, we propose a relation-aware shared representation learning method for prognosis analysis of cancers, which makes full use of clinical information and incomplete multi-modality data. The proposed method learns multi-modal shared space tailored for prognostic model via a dual mapping. Within the shared space, it equips with relational regularizers to explore the potential relations (i.e., feature-label and feature-feature relations) among multi-modality data for inducing discriminatory representations and simultaneously obtaining extra sparsity for alleviating overfitting. Moreover, it regresses and incorporates multiple auxiliary clinical attributes with dynamic coefficients to meliorate performance. Furthermore, in training stage, a partial mapping strategy is employed to extend and train a more reliable model with incomplete multi-modality data. We have evaluated our method on three public datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrate the superior performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助youlingduxiu采纳,获得10
刚刚
花生壳发布了新的文献求助10
刚刚
LF-Scie完成签到,获得积分10
1秒前
djiwisksk66应助wyp采纳,获得10
1秒前
七瑾完成签到,获得积分10
1秒前
JamesPei应助墨墨叻采纳,获得10
1秒前
承乐发布了新的文献求助10
2秒前
小咚咚咚发布了新的文献求助10
2秒前
吾将上下而求索完成签到,获得积分10
2秒前
2秒前
过时的冰淇淋完成签到,获得积分10
3秒前
3秒前
3秒前
科目三应助饿得咕咕地采纳,获得10
3秒前
3秒前
CY完成签到,获得积分10
4秒前
雨雨呀嘿发布了新的文献求助10
5秒前
lily完成签到,获得积分10
5秒前
FashionBoy应助KK采纳,获得50
6秒前
7秒前
千跃应助lay采纳,获得20
7秒前
8秒前
Lucas应助过时的冰淇淋采纳,获得10
8秒前
典雅的绿凝完成签到 ,获得积分10
9秒前
年轻半雪发布了新的文献求助10
9秒前
彩彩发布了新的文献求助10
10秒前
Katherine发布了新的文献求助30
11秒前
酷波er应助nesire采纳,获得10
12秒前
橙子发布了新的文献求助10
12秒前
雨雨呀嘿完成签到,获得积分10
12秒前
12秒前
NexusExplorer应助lorentzh采纳,获得30
13秒前
He发布了新的文献求助20
13秒前
yznfly应助zzz采纳,获得30
13秒前
弗洛伊德的梦完成签到,获得积分10
15秒前
可能完成签到,获得积分20
15秒前
panjunlu完成签到,获得积分10
15秒前
15秒前
过冷风发布了新的文献求助30
15秒前
热气球发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951641
求助须知:如何正确求助?哪些是违规求助? 3497078
关于积分的说明 11085803
捐赠科研通 3227504
什么是DOI,文献DOI怎么找? 1784450
邀请新用户注册赠送积分活动 868519
科研通“疑难数据库(出版商)”最低求助积分说明 801154