Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis With Auxiliary Clinical Variables and Incomplete Multi-Modality Data.

模态(人机交互) 过度拟合 判别式 计算机科学 特征(语言学) 人工智能 模式 代表(政治) 关系(数据库) 特征学习 机器学习 模式识别(心理学) 数据挖掘
作者
Zhenyuan Ning,Denghui Du,Chao Tu,Qianjin Feng,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 186-198
标识
DOI:10.1109/tmi.2021.3108802
摘要

The integrative analysis of complementary phenotype information contained in multi-modality data (e.g., histopathological images and genomic data) has advanced the prognostic evaluation of cancers. However, multi-modality based prognosis analysis confronts two challenges: (1) how to explore underlying relations inherent in different modalities data for learning compact and discriminative multi-modality representations; (2) how to take full consideration of incomplete multi-modality data for constructing accurate and robust prognostic model, since a host of complete multi-modality data are not always available. Additionally, many existing multi-modality based prognostic methods commonly ignore relevant clinical variables (e.g., grade and stage), which, however, may provide supplemental information to promote the performance of model. In this paper, we propose a relation-aware shared representation learning method for prognosis analysis of cancers, which makes full use of clinical information and incomplete multi-modality data. The proposed method learns multi-modal shared space tailored for prognostic model via a dual mapping. Within the shared space, it equips with relational regularizers to explore the potential relations (i.e., feature-label and feature-feature relations) among multi-modality data for inducing discriminatory representations and simultaneously obtaining extra sparsity for alleviating overfitting. Moreover, it regresses and incorporates multiple auxiliary clinical attributes with dynamic coefficients to meliorate performance. Furthermore, in training stage, a partial mapping strategy is employed to extend and train a more reliable model with incomplete multi-modality data. We have evaluated our method on three public datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrate the superior performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助batman采纳,获得10
1秒前
科研通AI2S应助hegui采纳,获得30
1秒前
1秒前
zyl发布了新的文献求助10
1秒前
2秒前
gg发布了新的文献求助30
2秒前
tramp应助ckj采纳,获得10
3秒前
宁祚完成签到,获得积分10
5秒前
6秒前
6秒前
qyhl完成签到 ,获得积分10
7秒前
coco234完成签到,获得积分10
8秒前
8秒前
blve完成签到,获得积分10
10秒前
13秒前
RBE小陈完成签到 ,获得积分10
15秒前
香蕉觅云应助Cell采纳,获得10
15秒前
浅浅依云完成签到,获得积分10
18秒前
善学以致用应助mariawang采纳,获得10
18秒前
19秒前
汉堡包应助淡定若采纳,获得10
21秒前
Jasper应助飞快的语蕊采纳,获得10
22秒前
明天完成签到 ,获得积分10
22秒前
锤死别人的锤完成签到,获得积分20
22秒前
22秒前
22秒前
renxuda发布了新的文献求助10
22秒前
gg应助li采纳,获得10
24秒前
wx完成签到,获得积分10
25秒前
26秒前
batman发布了新的文献求助10
26秒前
Eins完成签到,获得积分10
26秒前
轻松博超完成签到,获得积分10
27秒前
酷波er应助123456采纳,获得10
30秒前
34101127完成签到,获得积分10
31秒前
31秒前
Jasper应助blve采纳,获得10
32秒前
32秒前
w_tiger完成签到 ,获得积分10
33秒前
xfeng应助花花采纳,获得10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243839
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249504
捐赠科研通 2556366
什么是DOI,文献DOI怎么找? 1384479
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625809