ATR-FTIR-based rapid solution for the discrimination of lentils from different origins, with a special focus on PGI and Slow Food typical varieties

线性判别分析 数学 偏最小二乘回归 光学(聚焦) 投影(关系代数) 中红外 班级(哲学) 判别式 统计 人工智能 食品科学
作者
A. Biancolillo,M. Foschi,M. Di Micco,F. Di Donato,A.A. D'Archivio
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:: 107327-107327
标识
DOI:10.1016/j.microc.2022.107327
摘要

• Geographical Discrimination study for the traceability of Italian lentils. • Chemometric elaboration of the Mid-Infrared spectroscopic lentil profiles. • The discriminant approach correctly recognized 98.8% of the test samples. Three hundred forty-six (3 4 6) samples of lentils have been collected and analyzed by ATR-MIR spectroscopy. Of the investigated individuals, 283 were harvested in two Central-Italy regions (Umbria and Abruzzo), whereas the others were grown in Canada. At first, Partial Least Squares Discriminant Analysis (PLS-DA) was used to discriminate samples among the three origins. The outcome of PLS-DA analysis was noteworthy: only one individual (over 86 of the external test set) was erroneously assigned by the model, indicating the suitability of the proposed approach. Furthermore, Variable Importance in Projection (VIP) was exploited to inquire which spectral variables significantly contribute to the discrimination. Eventually, the focus has been circumscribed to two categories of high-valued lentils, e.g., lentils from Castelluccio di Norcia (CDN), a sub-set of the Umbria class, and from Santo Stefano di Sessanio (SSS), a sub-set of the Abruzzo class. These are of particular interest because CDN presents the Protected Geographical Indication (PGI) while SSS belongs to the Slow Food Presidium. The models for these classes provided interesting results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的卿完成签到,获得积分10
刚刚
归尘发布了新的文献求助10
1秒前
Orange应助LC采纳,获得10
3秒前
ccccc完成签到,获得积分20
4秒前
hullu完成签到,获得积分10
5秒前
SYLH应助lyh采纳,获得10
7秒前
小绵羊发布了新的文献求助10
8秒前
小林同学0219完成签到 ,获得积分10
9秒前
zhuzhu完成签到,获得积分10
10秒前
Afaq发布了新的文献求助10
13秒前
Sg完成签到,获得积分10
14秒前
18秒前
zhang完成签到 ,获得积分10
20秒前
kano完成签到,获得积分10
24秒前
乐乐应助科研鸟采纳,获得10
24秒前
开心谷秋完成签到,获得积分10
27秒前
FashionBoy应助Maryjo采纳,获得10
29秒前
Limerence完成签到 ,获得积分10
29秒前
31秒前
33秒前
老王完成签到,获得积分10
33秒前
33秒前
baobaobaozi发布了新的文献求助10
35秒前
36秒前
彭于晏应助zhangxinting0818采纳,获得10
37秒前
研友_Ze0vBn发布了新的文献求助10
38秒前
卡乐瑞咩吹可完成签到,获得积分10
39秒前
归尘发布了新的文献求助10
39秒前
40秒前
典雅的纸飞机完成签到 ,获得积分10
41秒前
43秒前
hehe完成签到,获得积分10
44秒前
44秒前
yx_cheng应助GT采纳,获得30
45秒前
可口可乐完成签到 ,获得积分10
46秒前
48秒前
科研鸟发布了新的文献求助10
48秒前
细腻灵安发布了新的文献求助10
50秒前
小宋同学不能怂完成签到 ,获得积分10
51秒前
干饭大王应助wenwen采纳,获得10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343