Transformers Can Do Bayesian Inference

人工智能 计算机科学 杠杆(统计) 推论 机器学习 概率逻辑 贝叶斯推理 高斯过程 贝叶斯概率 高斯分布 物理 量子力学
作者
Samuel Müller,Noah Hollmann,Sebastian Pineda Arango,Josif Grabocka,Frank Hutter
出处
期刊:Cornell University - arXiv 被引量:10
标识
DOI:10.48550/arxiv.2112.10510
摘要

Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力笑天发布了新的文献求助10
1秒前
momo完成签到 ,获得积分10
2秒前
zz完成签到,获得积分10
3秒前
aa关闭了aa文献求助
4秒前
Hello应助呆瓜采纳,获得10
4秒前
lby发布了新的文献求助10
6秒前
orixero应助yeurekar采纳,获得10
6秒前
morlison完成签到,获得积分10
9秒前
jaye_wang完成签到,获得积分10
10秒前
11秒前
KIRA发布了新的文献求助30
11秒前
汉堡包应助活力笑天采纳,获得10
13秒前
zec200030完成签到,获得积分10
13秒前
14秒前
15秒前
痴情的小懒虫完成签到,获得积分20
16秒前
16秒前
niumi190完成签到,获得积分10
17秒前
18秒前
爱静静应助zec200030采纳,获得10
19秒前
weitq66发布了新的文献求助30
20秒前
wetwww发布了新的文献求助10
23秒前
yangjinru完成签到 ,获得积分10
23秒前
24秒前
123发布了新的文献求助10
24秒前
上官若男应助kk采纳,获得10
25秒前
jejms完成签到,获得积分10
26秒前
科目三应助科研通管家采纳,获得30
29秒前
cdercder发布了新的文献求助10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
29秒前
炙热ding应助科研通管家采纳,获得50
29秒前
我我我我应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
钦川完成签到,获得积分10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352846
求助须知:如何正确求助?哪些是违规求助? 2977765
关于积分的说明 8681579
捐赠科研通 2658797
什么是DOI,文献DOI怎么找? 1455922
科研通“疑难数据库(出版商)”最低求助积分说明 674190
邀请新用户注册赠送积分活动 664849