Constructing Multi-View High-Order Functional Connectivity Networks for Diagnosis of Autism Spectrum Disorder.

判别式 自闭症谱系障碍 计算机科学 相关性 模式识别(心理学) 人工智能 系列(地层学) 自闭症 力矩(物理) 星团(航天器) 功能磁共振成像 机器学习
作者
Feng Zhao,Xiangfei Zhang,Kim-Han Thung,Ning Mao,Seong-Whan Lee,Dinggang Shen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (3): 1237-1250
标识
DOI:10.1109/tbme.2021.3122813
摘要

Brain functional connectivity network (FCN) based on resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to identify neuropsychiatric disorders such as autism spectrum disorder (ASD). Most existing FCN-based methods only estimate the correlation between brain regions of interest (ROIs), without exploring more informative higher-level interactions among multiple ROIs which could be beneficial to disease diagnosis. To fully explore the discriminative information provided by different brain networks, a cluster-based multi-view high-order FCN (Ho-FCN) framework is proposed in this paper. Specifically, we first group the functional connectivity (FC) time series into different clusters and compute the multi-order central moment series for the FC time series in each cluster. Then we utilize the correlation of central moment series between different clusters to reveal the high-order FC relationships among multiple ROIs. In addition, to address the phase mismatch issue in conventional FCNs, we also adopt the central moments of the correlation time series as the temporal-invariance features to capture the dynamic characteristics of low-order dynamic FCN (Lo-D-FCN). Experimentalresults on the ABIDE dataset validate that: 1) the proposed multi-view Ho-FCNs is able to explore rich discriminative information for ASD diagnosis; 2) the phase mismatch issue can be well circumvented by using central moments; and 3) the combination of different types of FCNs can significantly improve the diagnostic accuracy of ASD (86.2%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
赵永斌完成签到,获得积分20
1秒前
2秒前
Hello应助想早点退休采纳,获得10
2秒前
wenran雪发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
一位名圆完成签到,获得积分10
3秒前
4秒前
4秒前
Owen应助青青采纳,获得10
4秒前
搜集达人应助土豆淀粉采纳,获得10
4秒前
5秒前
科研通AI2S应助小蚊子采纳,获得10
5秒前
5秒前
上官若男应助王哪跑12采纳,获得10
5秒前
CodeCraft应助yangcong采纳,获得10
5秒前
gwentea发布了新的文献求助10
6秒前
6秒前
暖暖发布了新的文献求助10
6秒前
Jessekwok完成签到,获得积分10
7秒前
7秒前
7秒前
赵永斌发布了新的文献求助10
7秒前
lily000完成签到,获得积分10
7秒前
脑洞疼应助wyx采纳,获得10
7秒前
毛绒绒窝铺完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
profit完成签到 ,获得积分10
8秒前
科研通AI5应助糊涂涂采纳,获得30
8秒前
小二郎应助curlycai采纳,获得10
8秒前
潇洒毒娘发布了新的文献求助10
8秒前
爆米花应助现实的问玉采纳,获得10
9秒前
DT发布了新的文献求助10
9秒前
9秒前
gwentea完成签到,获得积分20
10秒前
pwy发布了新的文献求助10
10秒前
Owen应助阿鸢采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403