Alterations in Patients With First-Episode Depression in the Eyes-Open and Eyes-Closed Conditions: A Resting-State EEG Study

脑电图 萧条(经济学) 睁开眼睛 静息状态功能磁共振成像 心理学 医学 听力学 精神科 眼科 神经科学 凯恩斯经济学 平衡(能力) 经济
作者
Shuang Liu,Xiaoya Liu,Danfeng Yan,Sitong Chen,Yanli Liu,Xinyu Hao,Wenwen Ou,Zhenni Huang,Fangyue Su,Feng He,Dong Ming
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 1019-1029 被引量:21
标识
DOI:10.1109/tnsre.2022.3166824
摘要

Altered resting-state EEG activity has been repeatedly reported in major depressive disorder (MDD), but no robust biomarkers have been identified until now. The poor consistency of EEG alterations may be due to inconsistent resting conditions; that is, the eyes-open (EO) and eyes-closed (EC) conditions. Here, we explored the effect of the EO and EC conditions on EEG biomarkers for discriminating MDD subjects and healthy control (HC) subjects. EEG data were recorded from 30 first-episode MDD and 26 HC subjects during an 8-min resting-state session. The features were extracted using spectral power, Lempel-Ziv complexity, and detrended fluctuation analysis. Significant features were further selected via the sequential backward feature selection algorithm. Support vector machine (SVM), logistic regression, and linear discriminate analysis were used to determine a better resting condition to provide more reliable estimates for identifying MDD. Compared with the HC group, we found that the MDD group exhibited widespread increased β and γ powers ( ) in both conditions. In the EO condition, the MDD group showed increased complexity and scaling exponents in the α band relative to HC subjects ( ). The best classification performance of the combined feature sets was found in the EO condition, with the leave-one-out classification accuracy of 89.29%, sensitivity of 90.00%, and specificity of 88.46% using SVM with the linear kernel classifier when the threshold was set to 0.7, followed by the β and γ spectral features with an average accuracy of 83.93%. Overall, EO and EC conditions indeed affected the between-group variance, and the EO condition is suggested as the more separable resting condition to identify depression. Specially, the β and γ powers are suggested as potential biomarkers for first-episode MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恣意完成签到,获得积分10
1秒前
安凉关注了科研通微信公众号
1秒前
通~发布了新的文献求助10
2秒前
山乞凡完成签到 ,获得积分10
2秒前
2秒前
星辰大海应助粥粥采纳,获得10
3秒前
科研通AI5应助朴素小鸟胃采纳,获得10
3秒前
彭于晏应助拈花采纳,获得10
3秒前
NN发布了新的文献求助20
3秒前
烟雨行舟发布了新的文献求助10
4秒前
huang完成签到,获得积分20
4秒前
君莫笑完成签到 ,获得积分10
5秒前
赘婿应助ruby采纳,获得10
5秒前
爱科研的佳慧完成签到,获得积分10
6秒前
小只bb完成签到,获得积分10
6秒前
7秒前
Akim应助lxh2424采纳,获得10
7秒前
爆米花应助dingdong采纳,获得10
8秒前
xtqgyy驳回了大个应助
8秒前
赘婿应助斯文芷荷采纳,获得10
8秒前
kss完成签到,获得积分10
8秒前
9秒前
9秒前
Hupoo完成签到,获得积分10
9秒前
田様应助demonox采纳,获得10
9秒前
粥粥完成签到,获得积分10
9秒前
10秒前
光电很亮完成签到,获得积分10
10秒前
励志梦发布了新的文献求助10
10秒前
Fluoxetine完成签到,获得积分10
11秒前
11秒前
冰糖葫芦娃完成签到 ,获得积分10
12秒前
我是站长才怪完成签到,获得积分0
12秒前
魔幻灵槐发布了新的文献求助10
13秒前
文献互助1完成签到 ,获得积分10
13秒前
星空完成签到,获得积分10
14秒前
LJL发布了新的文献求助10
14秒前
LiShin发布了新的文献求助10
14秒前
蟹黄堡不打折完成签到,获得积分10
14秒前
我必做出来完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794