已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections

聚类分析 计算机科学 可解释性 特征选择 数据挖掘 特征(语言学) 可扩展性 高维数据聚类 维数之咒 人工智能 机器学习 哲学 语言学 数据库
作者
Chuang Bian,Xubin Wang,Yanchi Su,Yunhe Wang,Ka‐Chun Wong,Xiangtao Li
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 2181-2197 被引量:12
标识
DOI:10.1016/j.csbj.2022.04.023
摘要

With the development of next-generation sequencing technologies, single-cell RNA sequencing (scRNA-seq) has become one indispensable tool to reveal the wide heterogeneity between cells. Clustering is a fundamental task in this analysis to disclose the transcriptomic profiles of single cells and is one of the key computational problems that has received widespread attention. Recently, many clustering algorithms have been developed for the scRNA-seq data. Nevertheless, the computational models often suffer from realistic restrictions such as numerical instability, high dimensionality and computational scalability. Moreover, the accumulating cell numbers and high dropout rates bring a huge computational challenge to the analysis. To address these limitations, we first provide a systematic and extensive performance evaluation of four feature selection methods and nine scRNA-seq clustering algorithms on fourteen real single-cell RNA-seq datasets. Based on this, we then propose an accurate single-cell data analysis via Ensemble Feature Selection based Clustering, called scEFSC. Indeed, the algorithm employs several unsupervised feature selections to remove genes that do not contribute significantly to the scRNA-seq data. After that, different single-cell RNA-seq clustering algorithms are proposed to cluster the data filtered by multiple unsupervised feature selections, and then the clustering results are combined using weighted-based meta-clustering. We applied scEFSC to the fourteen real single-cell RNA-seq datasets and the experimental results demonstrated that our proposed scEFSC outperformed the other scRNA-seq clustering algorithms with several evaluation metrics. In addition, we established the biological interpretability of scEFSC by carrying out differential gene expression analysis, gene ontology enrichment and KEGG analysis. scEFSC is available at https://github.com/Conan-Bian/scEFSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助成就的涫采纳,获得10
1秒前
wtsow发布了新的文献求助10
1秒前
2秒前
4秒前
淳于觅云发布了新的文献求助10
4秒前
cctv18应助高兴冰淇淋采纳,获得30
5秒前
Drwang发布了新的文献求助10
5秒前
5秒前
斯文败类应助Bobo采纳,获得10
5秒前
恰饭完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助直率天亦采纳,获得30
6秒前
冷傲诗蕊完成签到,获得积分10
9秒前
77发布了新的文献求助10
9秒前
9秒前
10秒前
柯一一应助酷酷鱼采纳,获得10
11秒前
调研昵称发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
传奇3应助耍酷念柏采纳,获得30
13秒前
欢城发布了新的文献求助10
13秒前
大个应助HYY采纳,获得10
14秒前
邦邦发布了新的文献求助10
14秒前
14秒前
成就的涫发布了新的文献求助10
15秒前
今后应助Drwang采纳,获得10
15秒前
16秒前
hearan发布了新的文献求助10
16秒前
16秒前
19秒前
19秒前
77完成签到,获得积分10
20秒前
李健应助Bailey采纳,获得10
20秒前
21秒前
香蕉念薇完成签到,获得积分10
22秒前
炼丹发布了新的文献求助10
24秒前
张可发布了新的文献求助10
25秒前
深情安青应助zz采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422600
求助须知:如何正确求助?哪些是违规求助? 3022971
关于积分的说明 8903137
捐赠科研通 2710435
什么是DOI,文献DOI怎么找? 1486430
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286