Machine learning algorithms to estimate 10-Year survival in patients with bone metastases due to prostate cancer: toward a disease-specific survival estimation tool

医学 前列腺癌 布里氏评分 肿瘤科 外科肿瘤学 生存分析 内科学 疾病 阶段(地层学) 癌症 接收机工作特性 骨转移 机器学习 古生物学 计算机科学 生物
作者
Ashley B. Anderson,Clare Grazal,Rikard Wedin,Huai‐Ching Kuo,Yongmei Chen,Bryce Christensen,Jennifer Cullen,Jonathan A. Forsberg
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:8
标识
DOI:10.1186/s12885-022-09491-7
摘要

Prognostic indicators, treatments, and survival estimates vary by cancer type. Therefore, disease-specific models are needed to estimate patient survival. Our primary aim was to develop models to estimate survival duration after treatment for skeletal-related events (SREs) (symptomatic bone metastasis, including impending or actual pathologic fractures) in men with metastatic bone disease due to prostate cancer. Such disease-specific models could be added to the PATHFx clinical-decision support tool, which is available worldwide, free of charge. Our secondary aim was to determine disease-specific factors that should be included in an international cancer registry.We analyzed records of 438 men with metastatic prostate cancer who sustained SREs that required treatment with radiotherapy or surgery from 1989-2017. We developed and validated 6 models for 1-, 2-, 3-, 4-, 5-, and 10-year survival after treatment. Model performance was evaluated using calibration analysis, Brier scores, area under the receiver operator characteristic curve (AUC), and decision curve analysis to determine the models' clinical utility. We characterized the magnitude and direction of model features.The models exhibited acceptable calibration, accuracy (Brier scores < 0.20), and classification ability (AUCs > 0.73). Decision curve analysis determined that all 6 models were suitable for clinical use. The order of feature importance was distinct for each model. In all models, 3 factors were positively associated with survival duration: younger age at metastasis diagnosis, proximal prostate-specific antigen (PSA) < 10 ng/mL, and slow-rising alkaline phosphatase velocity (APV).We developed models that estimate survival duration in patients with metastatic bone disease due to prostate cancer. These models require external validation but should meanwhile be included in the PATHFx tool. PSA and APV data should be recorded in an international cancer registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aldehyde应助王燕峰采纳,获得10
刚刚
2秒前
山水之乐发布了新的文献求助10
2秒前
3秒前
迷途完成签到,获得积分10
3秒前
朝圣者发布了新的文献求助10
3秒前
4秒前
5秒前
善学以致用应助李串串采纳,获得10
5秒前
王燕峰完成签到,获得积分20
6秒前
zdxs完成签到,获得积分10
6秒前
Rr完成签到,获得积分10
6秒前
7秒前
迷途发布了新的文献求助10
7秒前
Jiye完成签到 ,获得积分10
8秒前
七七发布了新的文献求助10
8秒前
KM完成签到,获得积分10
8秒前
Pam发布了新的文献求助10
9秒前
goldenfleece完成签到,获得积分10
9秒前
杨迪祥完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
好好好发布了新的文献求助10
11秒前
无花果应助朝圣者采纳,获得10
12秒前
打打应助glimmer采纳,获得10
13秒前
丘比特应助gyr采纳,获得10
13秒前
田様应助小颜儿采纳,获得10
14秒前
14秒前
wanan发布了新的文献求助10
15秒前
一个大花瓶完成签到 ,获得积分10
16秒前
hui完成签到,获得积分10
16秒前
leilei发布了新的文献求助10
16秒前
虚拟的颦完成签到 ,获得积分20
17秒前
知性的千秋完成签到,获得积分10
17秒前
果冻完成签到 ,获得积分10
18秒前
吴吴发布了新的文献求助10
18秒前
zhaosiqi完成签到 ,获得积分10
18秒前
777完成签到,获得积分10
19秒前
star应助falcon采纳,获得200
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080