Machine learning algorithms to estimate 10-Year survival in patients with bone metastases due to prostate cancer: toward a disease-specific survival estimation tool

医学 前列腺癌 布里氏评分 肿瘤科 外科肿瘤学 生存分析 内科学 疾病 阶段(地层学) 癌症 接收机工作特性 骨转移 机器学习 古生物学 计算机科学 生物
作者
Ashley B. Anderson,Clare Grazal,Rikard Wedin,Huai‐Ching Kuo,Yongmei Chen,Bryce Christensen,Jennifer Cullen,Jonathan A. Forsberg
出处
期刊:BMC Cancer [BioMed Central]
卷期号:22 (1) 被引量:8
标识
DOI:10.1186/s12885-022-09491-7
摘要

Prognostic indicators, treatments, and survival estimates vary by cancer type. Therefore, disease-specific models are needed to estimate patient survival. Our primary aim was to develop models to estimate survival duration after treatment for skeletal-related events (SREs) (symptomatic bone metastasis, including impending or actual pathologic fractures) in men with metastatic bone disease due to prostate cancer. Such disease-specific models could be added to the PATHFx clinical-decision support tool, which is available worldwide, free of charge. Our secondary aim was to determine disease-specific factors that should be included in an international cancer registry.We analyzed records of 438 men with metastatic prostate cancer who sustained SREs that required treatment with radiotherapy or surgery from 1989-2017. We developed and validated 6 models for 1-, 2-, 3-, 4-, 5-, and 10-year survival after treatment. Model performance was evaluated using calibration analysis, Brier scores, area under the receiver operator characteristic curve (AUC), and decision curve analysis to determine the models' clinical utility. We characterized the magnitude and direction of model features.The models exhibited acceptable calibration, accuracy (Brier scores < 0.20), and classification ability (AUCs > 0.73). Decision curve analysis determined that all 6 models were suitable for clinical use. The order of feature importance was distinct for each model. In all models, 3 factors were positively associated with survival duration: younger age at metastasis diagnosis, proximal prostate-specific antigen (PSA) < 10 ng/mL, and slow-rising alkaline phosphatase velocity (APV).We developed models that estimate survival duration in patients with metastatic bone disease due to prostate cancer. These models require external validation but should meanwhile be included in the PATHFx tool. PSA and APV data should be recorded in an international cancer registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
teadan完成签到 ,获得积分10
刚刚
li发布了新的文献求助10
刚刚
一韩之信完成签到,获得积分10
1秒前
1秒前
1秒前
雪城完成签到,获得积分10
1秒前
鸭子完成签到,获得积分10
2秒前
其11完成签到,获得积分20
2秒前
Donson_Li完成签到,获得积分10
2秒前
2秒前
科研通AI5应助zhn0607采纳,获得10
3秒前
sunny完成签到,获得积分10
3秒前
cyndi发布了新的文献求助10
4秒前
4秒前
荼白完成签到 ,获得积分10
4秒前
4秒前
韦远侵完成签到,获得积分10
4秒前
ala完成签到,获得积分10
5秒前
啾啾完成签到 ,获得积分10
5秒前
鸭子发布了新的文献求助10
5秒前
大大大骁完成签到,获得积分20
6秒前
wwc完成签到,获得积分10
6秒前
李小雨发布了新的文献求助10
6秒前
今后应助风清扬采纳,获得10
9秒前
白云发布了新的文献求助10
9秒前
浮游应助白白白采纳,获得10
9秒前
搜集达人应助Qiangjianjie采纳,获得10
9秒前
科目三应助南乔采纳,获得10
10秒前
悦耳亦云完成签到 ,获得积分10
10秒前
九湖夷上完成签到,获得积分10
11秒前
科研通AI6应助小陶采纳,获得10
11秒前
刘凯蕊完成签到 ,获得积分10
11秒前
胖胖胖胖完成签到,获得积分10
11秒前
莫三颜完成签到 ,获得积分10
12秒前
清风细雨完成签到 ,获得积分10
12秒前
Ray完成签到,获得积分10
12秒前
123456789完成签到,获得积分10
12秒前
pp完成签到 ,获得积分10
13秒前
13秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212962
求助须知:如何正确求助?哪些是违规求助? 4388957
关于积分的说明 13665312
捐赠科研通 4249723
什么是DOI,文献DOI怎么找? 2331751
邀请新用户注册赠送积分活动 1329470
关于科研通互助平台的介绍 1282998