Machine learning algorithms to estimate 10-Year survival in patients with bone metastases due to prostate cancer: toward a disease-specific survival estimation tool

医学 前列腺癌 布里氏评分 肿瘤科 外科肿瘤学 生存分析 内科学 疾病 阶段(地层学) 癌症 接收机工作特性 骨转移 机器学习 古生物学 计算机科学 生物
作者
Ashley B. Anderson,Clare Grazal,Rikard Wedin,Huai‐Ching Kuo,Yongmei Chen,Bryce Christensen,Jennifer Cullen,Jonathan A. Forsberg
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:8
标识
DOI:10.1186/s12885-022-09491-7
摘要

Prognostic indicators, treatments, and survival estimates vary by cancer type. Therefore, disease-specific models are needed to estimate patient survival. Our primary aim was to develop models to estimate survival duration after treatment for skeletal-related events (SREs) (symptomatic bone metastasis, including impending or actual pathologic fractures) in men with metastatic bone disease due to prostate cancer. Such disease-specific models could be added to the PATHFx clinical-decision support tool, which is available worldwide, free of charge. Our secondary aim was to determine disease-specific factors that should be included in an international cancer registry.We analyzed records of 438 men with metastatic prostate cancer who sustained SREs that required treatment with radiotherapy or surgery from 1989-2017. We developed and validated 6 models for 1-, 2-, 3-, 4-, 5-, and 10-year survival after treatment. Model performance was evaluated using calibration analysis, Brier scores, area under the receiver operator characteristic curve (AUC), and decision curve analysis to determine the models' clinical utility. We characterized the magnitude and direction of model features.The models exhibited acceptable calibration, accuracy (Brier scores < 0.20), and classification ability (AUCs > 0.73). Decision curve analysis determined that all 6 models were suitable for clinical use. The order of feature importance was distinct for each model. In all models, 3 factors were positively associated with survival duration: younger age at metastasis diagnosis, proximal prostate-specific antigen (PSA) < 10 ng/mL, and slow-rising alkaline phosphatase velocity (APV).We developed models that estimate survival duration in patients with metastatic bone disease due to prostate cancer. These models require external validation but should meanwhile be included in the PATHFx tool. PSA and APV data should be recorded in an international cancer registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到 ,获得积分10
2秒前
NXZNXZ完成签到 ,获得积分10
4秒前
fanconi完成签到 ,获得积分10
6秒前
大个应助Kevin采纳,获得10
7秒前
曾珍完成签到 ,获得积分10
7秒前
lichen完成签到,获得积分10
8秒前
9秒前
爱听歌寄云完成签到 ,获得积分10
9秒前
Kaives完成签到 ,获得积分10
11秒前
英俊的铭应助Bonnie采纳,获得10
14秒前
哆啦A梦完成签到,获得积分10
14秒前
风雨无阻发布了新的文献求助10
15秒前
16秒前
脑洞疼应助戈壁滩的鱼采纳,获得10
17秒前
谨慎纸飞机完成签到,获得积分10
18秒前
drift完成签到,获得积分10
18秒前
风趣的惜天完成签到 ,获得积分10
19秒前
性温雅完成签到 ,获得积分10
19秒前
顾矜应助勤恳依霜采纳,获得10
20秒前
Kevin发布了新的文献求助10
22秒前
23秒前
23秒前
风雨无阻完成签到,获得积分10
24秒前
Bonnie完成签到,获得积分20
26秒前
27秒前
菠萝炒蛋加饭完成签到 ,获得积分10
27秒前
研友_O8Wz4Z完成签到,获得积分10
28秒前
执着易形发布了新的文献求助10
28秒前
浅忆完成签到 ,获得积分10
28秒前
未設定发布了新的文献求助10
28秒前
打打应助研友_LMBAXn采纳,获得10
31秒前
lianliyou应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
lianliyou应助科研通管家采纳,获得10
32秒前
wanci应助科研通管家采纳,获得10
32秒前
lianliyou应助科研通管家采纳,获得10
32秒前
meng完成签到,获得积分10
33秒前
天才小能喵完成签到 ,获得积分0
33秒前
科研小南瓜完成签到 ,获得积分10
33秒前
丿淘丶Tao丨完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751306
关于积分的说明 7612410
捐赠科研通 2403104
什么是DOI,文献DOI怎么找? 1275188
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053