Machine learning algorithms to estimate 10-Year survival in patients with bone metastases due to prostate cancer: toward a disease-specific survival estimation tool

医学 前列腺癌 布里氏评分 肿瘤科 外科肿瘤学 生存分析 内科学 疾病 阶段(地层学) 癌症 接收机工作特性 骨转移 机器学习 古生物学 计算机科学 生物
作者
Ashley B. Anderson,Clare Grazal,Rikard Wedin,Huai‐Ching Kuo,Yongmei Chen,Bryce Christensen,Jennifer Cullen,Jonathan A. Forsberg
出处
期刊:BMC Cancer [Springer Nature]
卷期号:22 (1) 被引量:8
标识
DOI:10.1186/s12885-022-09491-7
摘要

Prognostic indicators, treatments, and survival estimates vary by cancer type. Therefore, disease-specific models are needed to estimate patient survival. Our primary aim was to develop models to estimate survival duration after treatment for skeletal-related events (SREs) (symptomatic bone metastasis, including impending or actual pathologic fractures) in men with metastatic bone disease due to prostate cancer. Such disease-specific models could be added to the PATHFx clinical-decision support tool, which is available worldwide, free of charge. Our secondary aim was to determine disease-specific factors that should be included in an international cancer registry.We analyzed records of 438 men with metastatic prostate cancer who sustained SREs that required treatment with radiotherapy or surgery from 1989-2017. We developed and validated 6 models for 1-, 2-, 3-, 4-, 5-, and 10-year survival after treatment. Model performance was evaluated using calibration analysis, Brier scores, area under the receiver operator characteristic curve (AUC), and decision curve analysis to determine the models' clinical utility. We characterized the magnitude and direction of model features.The models exhibited acceptable calibration, accuracy (Brier scores < 0.20), and classification ability (AUCs > 0.73). Decision curve analysis determined that all 6 models were suitable for clinical use. The order of feature importance was distinct for each model. In all models, 3 factors were positively associated with survival duration: younger age at metastasis diagnosis, proximal prostate-specific antigen (PSA) < 10 ng/mL, and slow-rising alkaline phosphatase velocity (APV).We developed models that estimate survival duration in patients with metastatic bone disease due to prostate cancer. These models require external validation but should meanwhile be included in the PATHFx tool. PSA and APV data should be recorded in an international cancer registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhw发布了新的文献求助10
刚刚
wanci应助MSl采纳,获得10
刚刚
刚刚
fakte完成签到,获得积分10
1秒前
英俊的铭应助飞行中的鱼采纳,获得10
1秒前
free应助小宁同学采纳,获得10
2秒前
2秒前
文献搬运工完成签到,获得积分10
3秒前
达拉崩吧发布了新的文献求助20
3秒前
4秒前
zzzzf完成签到,获得积分10
4秒前
科研通AI6应助LULU采纳,获得10
5秒前
6秒前
6秒前
俏皮的安萱完成签到 ,获得积分10
6秒前
所所应助等待的忻采纳,获得10
6秒前
小马甲应助岄岒yq采纳,获得10
7秒前
7秒前
8秒前
可靠F发布了新的文献求助10
8秒前
8秒前
在水一方应助霸气鹏煊采纳,获得10
8秒前
西瓜发布了新的文献求助30
8秒前
小宁同学完成签到,获得积分10
8秒前
9秒前
意羡发布了新的文献求助10
9秒前
sasa完成签到,获得积分10
9秒前
义气的秋完成签到 ,获得积分10
9秒前
张益达应助hearz采纳,获得20
9秒前
万能图书馆应助年轻小之采纳,获得10
9秒前
陆倩发布了新的文献求助10
10秒前
10秒前
慕青应助合适的书文采纳,获得10
10秒前
yy发布了新的文献求助10
10秒前
Lucas应助jasmine采纳,获得10
11秒前
茶叶酱发布了新的文献求助10
11秒前
共享精神应助刹那采纳,获得10
12秒前
WangYF2025完成签到 ,获得积分10
12秒前
嘿嘿发布了新的文献求助30
12秒前
lau发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329313
求助须知:如何正确求助?哪些是违规求助? 4468897
关于积分的说明 13907268
捐赠科研通 4361932
什么是DOI,文献DOI怎么找? 2396101
邀请新用户注册赠送积分活动 1389467
关于科研通互助平台的介绍 1360296