吸附
吡啶
共价有机骨架
阳离子聚合
水溶液
离子键合
吸附剂
共价键
盐(化学)
无定形固体
化学工程
化学
无机化学
有机化学
离子
工程类
作者
Mengjie Hao,Zhongshan Chen,Hui Yang,Geoffrey I. N. Waterhouse,Shengqian Ma,Xiangke Wang
标识
DOI:10.1016/j.scib.2022.02.012
摘要
Ionic covalent organic framework (COF) materials with high specific surface areas and well-defined pore structures are desired for many applications yet seldom reported. Herein, we report a cationic pyridinium salt-based COF (PS-COF-1) with a Brunauer-Emmett-Teller (BET) surface area of 2703 m2 g-1, state-of-the-art for an ionic COF. Aided by its ordered pore structure, chemical stability, and radiation resistance, PS-COF-1 showed exceptional adsorption properties toward aqueous ReO4- (1262 mg g-1) and 99TcO4-. Its adsorption performance surpassed its corresponding amorphous analogue. Importantly, PS-COF-1 exhibited fast adsorption kinetics, high adsorption capacities, and selectivity for 99TcO4- and ReO4- at high ionic strengths, leading to the successful removal of 99TcO4- under conditions relevant to low-activity waste streams at US legacy Hanford nuclear sites. In addition, PS-COF-1 can rapidly decontaminate ReO4-/99TcO4- polluted potable water (∼10 ppb) to drinking water level (0 ppb, part per billion) within 10 min. Density functional theory (DFT) calculations revealed PS-COF-1 has a strong affinity for ReO4- and 99TcO4-, thereby favoring adsorption of these low charge density anions over other common anions (e.g., Cl-, NO3-, SO42-, CO32-). Our work demonstrates a novel cationic COF sorbent for selective radionuclide capture and legacy nuclear waste management.
科研通智能强力驱动
Strongly Powered by AbleSci AI