亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Effective Federated Learning Verification Strategy and Its Applications for Fault Diagnosis in Industrial IoT Systems

计算机科学 稳健性(进化) 粒子群优化 数据建模 数据挖掘 实时计算 机器学习 数据库 生物化学 基因 化学
作者
Yuanjiang Li,Yunfeng Chen,Kai Zhu,Cong Bai,Jinglin Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 16835-16849 被引量:27
标识
DOI:10.1109/jiot.2022.3153343
摘要

Due to the diverse equipment and uneven load distribution in industrial environments, data regarding faults are often unbalanced. Moreover, data and models from clients may become contaminated or damaged, affecting diagnostic performance. To overcome these problems, this study proposes a stacking model for diagnosing interturn short circuit (ITSC) faults in permanent magnet synchronous motors (PMSMs). Federated learning (FL) is used to train the model to increase data security and overcome data islanding in distributed scenarios. Moreover, an improved verification strategy was adopted to select appropriate client models in each round to update the FL global model. We created a secondary server-side data set to validate the client weightings. The data set contains clean sample data for all ITSC fault categories. By calculating the fault diagnosis accuracy of the global model on the auxiliary data set, the model eliminates low-quality clients with uneven fault distributions. The improved particle swarm optimization (PSO) is used to optimize the weight coefficients of clients involved in aggregation, improving the robustness of the aggregation strategy under a joint learning system. In evaluation experiments, compared with the federated average (FedAvg) model, the proposed dynamic verification model exhibited the better diagnostic accuracy in situations of data imbalance, incurred lower communication costs, and prevented local oscillations in the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mirr完成签到 ,获得积分10
5秒前
7秒前
VDC完成签到,获得积分0
8秒前
9秒前
搜集达人应助LEETHEO采纳,获得10
9秒前
程住气完成签到 ,获得积分10
12秒前
17秒前
ceeray23应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
yyds应助科研通管家采纳,获得80
18秒前
yyds应助科研通管家采纳,获得80
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
清脆雪糕完成签到,获得积分10
18秒前
TAT完成签到 ,获得积分10
19秒前
赘婿应助橱窗采纳,获得10
19秒前
清脆雪糕发布了新的文献求助10
21秒前
合适雅绿完成签到 ,获得积分10
22秒前
VDC发布了新的文献求助10
27秒前
32秒前
橱窗发布了新的文献求助10
37秒前
38秒前
45秒前
cccxq发布了新的文献求助10
51秒前
仙人不指路完成签到 ,获得积分10
55秒前
CodeCraft应助cccxq采纳,获得10
55秒前
FashionBoy应助橱窗采纳,获得10
57秒前
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
1分钟前
科研小新发布了新的文献求助10
1分钟前
橱窗完成签到,获得积分10
1分钟前
1分钟前
绿柏完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332