亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Effective Federated Learning Verification Strategy and Its Applications for Fault Diagnosis in Industrial IoT Systems

计算机科学 稳健性(进化) 粒子群优化 数据建模 数据挖掘 实时计算 机器学习 数据库 生物化学 化学 基因
作者
Yuanjiang Li,Yunfeng Chen,Kai Zhu,Cong Bai,Jinglin Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 16835-16849 被引量:27
标识
DOI:10.1109/jiot.2022.3153343
摘要

Due to the diverse equipment and uneven load distribution in industrial environments, data regarding faults are often unbalanced. Moreover, data and models from clients may become contaminated or damaged, affecting diagnostic performance. To overcome these problems, this study proposes a stacking model for diagnosing interturn short circuit (ITSC) faults in permanent magnet synchronous motors (PMSMs). Federated learning (FL) is used to train the model to increase data security and overcome data islanding in distributed scenarios. Moreover, an improved verification strategy was adopted to select appropriate client models in each round to update the FL global model. We created a secondary server-side data set to validate the client weightings. The data set contains clean sample data for all ITSC fault categories. By calculating the fault diagnosis accuracy of the global model on the auxiliary data set, the model eliminates low-quality clients with uneven fault distributions. The improved particle swarm optimization (PSO) is used to optimize the weight coefficients of clients involved in aggregation, improving the robustness of the aggregation strategy under a joint learning system. In evaluation experiments, compared with the federated average (FedAvg) model, the proposed dynamic verification model exhibited the better diagnostic accuracy in situations of data imbalance, incurred lower communication costs, and prevented local oscillations in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顶刊我来了完成签到,获得积分10
1秒前
吾日三省吾身完成签到,获得积分10
2秒前
3秒前
4秒前
8秒前
飞快的孱发布了新的文献求助10
9秒前
11秒前
黑摄会阿Fay完成签到,获得积分10
11秒前
GingerF应助Ken采纳,获得50
12秒前
呆萌初南完成签到 ,获得积分10
14秒前
17秒前
小二郎应助Aleksibob采纳,获得30
18秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
18秒前
20秒前
GavinYi完成签到,获得积分10
21秒前
小马甲应助琪琪采纳,获得10
22秒前
luyajie发布了新的文献求助10
23秒前
23秒前
24秒前
舒心谷雪完成签到 ,获得积分10
26秒前
小二郎应助刺猬采纳,获得10
26秒前
27秒前
Aleksibob完成签到,获得积分10
28秒前
SciGPT应助丰富的松鼠采纳,获得10
31秒前
喜悦宫苴完成签到,获得积分10
32秒前
32秒前
34秒前
乐乐应助Tracy采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
38秒前
英姑应助渡己。采纳,获得10
38秒前
烟花应助科研通管家采纳,获得50
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
归尘应助科研通管家采纳,获得10
38秒前
赘婿应助科研通管家采纳,获得10
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
归尘应助科研通管家采纳,获得10
38秒前
研友_VZG7GZ应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得10
38秒前
我是老大应助科研通管家采纳,获得10
38秒前
Hello应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314