An Effective Federated Learning Verification Strategy and Its Applications for Fault Diagnosis in Industrial IoT Systems

计算机科学 稳健性(进化) 粒子群优化 数据建模 数据挖掘 实时计算 机器学习 数据库 生物化学 基因 化学
作者
Yuanjiang Li,Yunfeng Chen,Kai Zhu,Cong Bai,Jinglin Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 16835-16849 被引量:27
标识
DOI:10.1109/jiot.2022.3153343
摘要

Due to the diverse equipment and uneven load distribution in industrial environments, data regarding faults are often unbalanced. Moreover, data and models from clients may become contaminated or damaged, affecting diagnostic performance. To overcome these problems, this study proposes a stacking model for diagnosing interturn short circuit (ITSC) faults in permanent magnet synchronous motors (PMSMs). Federated learning (FL) is used to train the model to increase data security and overcome data islanding in distributed scenarios. Moreover, an improved verification strategy was adopted to select appropriate client models in each round to update the FL global model. We created a secondary server-side data set to validate the client weightings. The data set contains clean sample data for all ITSC fault categories. By calculating the fault diagnosis accuracy of the global model on the auxiliary data set, the model eliminates low-quality clients with uneven fault distributions. The improved particle swarm optimization (PSO) is used to optimize the weight coefficients of clients involved in aggregation, improving the robustness of the aggregation strategy under a joint learning system. In evaluation experiments, compared with the federated average (FedAvg) model, the proposed dynamic verification model exhibited the better diagnostic accuracy in situations of data imbalance, incurred lower communication costs, and prevented local oscillations in the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
米龙完成签到,获得积分10
1秒前
1秒前
科研通AI6.1应助ljh采纳,获得10
1秒前
舒适的万言完成签到,获得积分10
2秒前
鱼鱼子发布了新的文献求助10
2秒前
2秒前
Phoo发布了新的文献求助10
2秒前
我是老大应助君打豆采纳,获得10
2秒前
Amuro完成签到,获得积分10
2秒前
Zoe完成签到,获得积分10
3秒前
3秒前
慕青应助怕孤单的惜梦采纳,获得10
3秒前
3秒前
3秒前
QQ发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
李萌萌完成签到 ,获得积分10
3秒前
彭于晏应助芬栀采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
小马甲应助勤恳易谙采纳,获得10
5秒前
bkagyin应助yunlei采纳,获得10
5秒前
义气饼干完成签到,获得积分10
6秒前
Owen应助QG采纳,获得10
6秒前
rain完成签到,获得积分10
6秒前
小二郎应助BouncyTree采纳,获得10
6秒前
丘比特应助小柴采纳,获得10
6秒前
CipherSage应助现在采纳,获得10
6秒前
瑶啊瑶完成签到,获得积分10
7秒前
7秒前
wanci应助侃侃采纳,获得10
7秒前
7秒前
花灯王子发布了新的文献求助10
7秒前
硕士发布了新的文献求助30
8秒前
smm发布了新的文献求助10
8秒前
yuanyueyue发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
David Zhang发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106