A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:321
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7890733完成签到,获得积分10
1秒前
欣喜的尔曼完成签到,获得积分20
1秒前
王叮叮发布了新的文献求助20
2秒前
kunkun完成签到,获得积分10
3秒前
4秒前
crrr完成签到,获得积分10
4秒前
xiaoguan完成签到,获得积分10
6秒前
Owen应助欣喜的尔曼采纳,获得10
8秒前
独特的翠芙完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
姜惠完成签到 ,获得积分10
11秒前
小脸红扑扑完成签到 ,获得积分10
12秒前
奋斗的凡完成签到 ,获得积分10
12秒前
13秒前
zhutier完成签到,获得积分10
14秒前
wrr完成签到,获得积分10
14秒前
WxChen完成签到,获得积分10
14秒前
开朗艳一完成签到,获得积分10
16秒前
Wonder完成签到,获得积分10
17秒前
yang完成签到,获得积分10
19秒前
123123完成签到 ,获得积分10
20秒前
温暖宛筠完成签到,获得积分10
20秒前
小欣6116完成签到,获得积分10
21秒前
请叫我风吹麦浪应助冬月采纳,获得10
21秒前
LIUYONG发布了新的文献求助10
22秒前
22秒前
肖雪依完成签到,获得积分10
22秒前
影子完成签到,获得积分10
23秒前
24秒前
晨珂完成签到,获得积分10
24秒前
Florencia发布了新的文献求助10
26秒前
xiezhuochun发布了新的文献求助10
27秒前
27秒前
同瓜不同命完成签到,获得积分10
29秒前
牛马哥发布了新的文献求助10
30秒前
温婉的松鼠完成签到,获得积分10
30秒前
31秒前
辛勤的寄瑶完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029