A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:321
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就叫十一吧完成签到,获得积分10
刚刚
1秒前
合适凡发布了新的文献求助10
3秒前
calm发布了新的文献求助10
3秒前
4秒前
4秒前
自由慕青完成签到,获得积分10
5秒前
chen_hebo发布了新的文献求助10
5秒前
SYLH应助FLZLC采纳,获得10
5秒前
sandy完成签到,获得积分10
5秒前
Ss发布了新的文献求助10
6秒前
领导范儿应助清风在侧采纳,获得10
6秒前
7秒前
jiaojiao完成签到 ,获得积分20
7秒前
子苇发布了新的文献求助10
7秒前
zjj完成签到,获得积分10
7秒前
7秒前
刘汉淼完成签到,获得积分10
7秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
ly完成签到,获得积分10
8秒前
jiayue完成签到,获得积分10
9秒前
科研人才发布了新的文献求助10
9秒前
大鱼完成签到 ,获得积分10
9秒前
jenningseastera应助合适凡采纳,获得20
9秒前
qwp发布了新的文献求助10
10秒前
爆米花应助hsxg采纳,获得10
10秒前
ding应助浅色墨水采纳,获得10
11秒前
Dexter发布了新的文献求助10
11秒前
12秒前
wqkkk发布了新的文献求助10
12秒前
13秒前
科研人才完成签到 ,获得积分10
13秒前
聚散流沙完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助30
13秒前
14秒前
14秒前
斯文败类应助fwz采纳,获得10
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288