A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:456
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助科研小秦采纳,获得30
刚刚
yym关注了科研通微信公众号
刚刚
Sandewna发布了新的文献求助10
1秒前
lytelope完成签到,获得积分10
1秒前
大白完成签到,获得积分10
2秒前
逍遥完成签到,获得积分10
2秒前
FashionBoy应助爱吃冰淇淋采纳,获得30
2秒前
丘比特应助像风一样自由采纳,获得10
2秒前
小冯完成签到 ,获得积分10
3秒前
水滴完成签到,获得积分10
3秒前
凯瑞发布了新的文献求助10
4秒前
Arvin发布了新的文献求助30
5秒前
5秒前
Jeff完成签到,获得积分10
5秒前
胖胖完成签到 ,获得积分0
6秒前
Dean应助皇帝的床帘采纳,获得40
8秒前
英姑应助su采纳,获得10
9秒前
9秒前
冰滋滋应助四然采纳,获得30
9秒前
cchen完成签到,获得积分10
9秒前
9秒前
will发布了新的文献求助10
10秒前
赘婿应助吁慧洋采纳,获得50
10秒前
11秒前
zwk12210完成签到,获得积分20
11秒前
充电宝应助Crazy_Runner采纳,获得10
12秒前
Mlwwq发布了新的文献求助10
12秒前
13秒前
小书包完成签到,获得积分10
13秒前
Carolejane完成签到 ,获得积分10
13秒前
14秒前
hzymed完成签到,获得积分10
14秒前
14秒前
sure发布了新的文献求助10
15秒前
15秒前
Yong-AI-BUPT发布了新的文献求助10
16秒前
p65完成签到,获得积分10
17秒前
南极冰完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603709
求助须知:如何正确求助?哪些是违规求助? 4688692
关于积分的说明 14855500
捐赠科研通 4694733
什么是DOI,文献DOI怎么找? 2540943
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814