A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:456
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ggboom发布了新的文献求助10
2秒前
田様应助hehe采纳,获得30
2秒前
w婷完成签到 ,获得积分0
2秒前
summer发布了新的文献求助30
2秒前
搜集达人应助美丽谷槐采纳,获得10
3秒前
Jared应助Rufina0720采纳,获得10
3秒前
噜啦啦发布了新的文献求助10
4秒前
小周完成签到,获得积分10
5秒前
orange完成签到 ,获得积分10
5秒前
叶克思完成签到,获得积分10
5秒前
Marcel完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
long完成签到,获得积分10
8秒前
小马甲应助曾予嘉采纳,获得10
8秒前
浮浮世世应助热情的板栗采纳,获得30
9秒前
9秒前
情怀应助Marcel采纳,获得10
9秒前
9秒前
10秒前
可爱的函函应助terryok采纳,获得10
10秒前
orixero应助绝不熬夜到2点采纳,获得10
10秒前
10秒前
10秒前
10秒前
小明不吃鱼完成签到,获得积分10
11秒前
11秒前
可以赐给小马青基嘛完成签到,获得积分10
12秒前
enzyme发布了新的文献求助10
12秒前
酷波er应助西科Jeremy采纳,获得10
12秒前
13秒前
健壮熊猫发布了新的文献求助10
13秒前
黑黑黑完成签到,获得积分10
13秒前
zd200572完成签到,获得积分10
13秒前
Maydalian发布了新的文献求助10
13秒前
亓大大完成签到,获得积分10
14秒前
14秒前
哈哈的哈哈完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531105
求助须知:如何正确求助?哪些是违规求助? 4620029
关于积分的说明 14571024
捐赠科研通 4559472
什么是DOI,文献DOI怎么找? 2498457
邀请新用户注册赠送积分活动 1478413
关于科研通互助平台的介绍 1449928