A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:456
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
errui发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
傲娇安珊完成签到 ,获得积分10
3秒前
3秒前
3秒前
CipherSage应助一_采纳,获得10
3秒前
嘟嘟发布了新的文献求助10
4秒前
Yumii完成签到,获得积分10
5秒前
SciGPT应助空谷幽兰采纳,获得10
5秒前
我知我完成签到,获得积分20
5秒前
Jasper应助于特采纳,获得10
6秒前
6秒前
独特的秋发布了新的文献求助10
6秒前
李健的小迷弟应助以乐采纳,获得10
7秒前
7秒前
8秒前
8秒前
无奈狗完成签到,获得积分10
8秒前
8秒前
8秒前
hm777发布了新的文献求助10
9秒前
蝴蝶变成毛毛虫完成签到,获得积分10
9秒前
阿春发布了新的文献求助10
10秒前
莹yy发布了新的文献求助10
10秒前
678邹完成签到 ,获得积分10
10秒前
纤云发布了新的文献求助10
11秒前
科研通AI6应助落后的天佑采纳,获得10
11秒前
正直芒果发布了新的文献求助10
12秒前
12秒前
阿浩完成签到,获得积分10
12秒前
在水一方应助zhw采纳,获得10
13秒前
cc发布了新的文献求助10
14秒前
14秒前
14秒前
陆小果发布了新的文献求助10
14秒前
fieri发布了新的文献求助10
14秒前
Owen应助hjw采纳,获得10
14秒前
小蘑菇应助jackten采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454