亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 特征提取 水准点(测量) 模式识别(心理学) 联营 背景(考古学) 计算机视觉 数学 哲学 地理 古生物学 几何学 生物 语言学 大地测量学
作者
Nianyin Zeng,Peishu Wu,Zidong Wang,Han Li,Weibo Liu,Xiaohui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:288
标识
DOI:10.1109/tim.2022.3153997
摘要

Object detection is a well-known task in the field of computer vision, especially the small target detection problem that has aroused great academic attention. In order to improve the detection performance of small objects, in this article, a novel enhanced multiscale feature fusion method is proposed, namely, the atrous spatial pyramid pooling-balanced-feature pyramid network (ABFPN). In particular, the atrous convolution operators with different dilation rates are employed to make full use of context information, where the skip connection is applied to achieve sufficient feature fusions. In addition, there is a balanced module to integrate and enhance features at different levels. The performance of the proposed ABFPN is evaluated on three public benchmark datasets, and experimental results demonstrate that it is a reliable and efficient feature fusion method. Furthermore, in order to validate the applicational potential in small objects, the developed ABFPN is utilized to detect surface tiny defects of the printed circuit board (PCB), which acts as the neck part of an improved PCB defect detection (IPDD) framework. While designing the IPDD, several powerful strategies are also employed to further improve the overall performance, which is evaluated via extensive ablation studies. Experiments on a public PCB defect detection database have demonstrated the superiority of the designed IPDD framework against the other seven state-of-the-art methods, which further validates the practicality of the proposed ABFPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zxcv22100发布了新的文献求助10
3秒前
6秒前
life完成签到 ,获得积分10
7秒前
8秒前
何三岁发布了新的文献求助10
11秒前
olekravchenko发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
FashionBoy应助何三岁采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
18秒前
量子星尘发布了新的文献求助10
21秒前
何三岁完成签到,获得积分10
21秒前
22秒前
peng完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
CipherSage应助DullElm采纳,获得10
29秒前
30秒前
Grayball应助chem-w采纳,获得10
32秒前
32秒前
LDD发布了新的文献求助10
35秒前
36秒前
VuuVuu发布了新的文献求助10
38秒前
40秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
42秒前
杰帅完成签到,获得积分10
42秒前
DullElm发布了新的文献求助10
46秒前
46秒前
51秒前
DullElm完成签到,获得积分10
51秒前
zoele完成签到 ,获得积分0
53秒前
54秒前
55秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
NagatoYuki完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743733
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462