Concrete Crack Detection Based on Hybrid Residual Network and Graph Convolutional Network

邻接矩阵 计算机科学 残余物 图形 卷积神经网络 可靠性(半导体) 特征(语言学) 人工智能 模式识别(心理学) 结构工程
作者
Xiaosheng Huang,Xiao Zhou,Runtao Duan
出处
期刊:Lecture notes in electrical engineering 卷期号:: 74-81
标识
DOI:10.1007/978-981-16-9913-9_9
摘要

Crack is an important sign of degradation of health and reliability of civil infrastructure. It is of great significance to detect cracks automatically to maintain civil infrastructure. Many computer vision based concrete crack detection methods had been proposed, but currently, the proposed methods did not consider the relationship between categories when generates classification parameters, and ignored the global correlation between labels. To solve the problem, a concrete crack detection method based on hybrid residual network and graph convolutional network is proposed. Firstly, the crack features extraction network was constructed by using ResNet-101 to generate crack feature map. Then, the label matrix of crack feature maps and the adjacency matrix according to the co-occurrence relationship between labels of crack images were constructed and generated respectively. Finally, the concrete crack detection network was constructed by using the graph convolutional network to detect concrete cracks. In order to verify the detection result, a comparative experiment on BCD and SDNET2018 data sets was conducted. The experimental results show that this method has better accuracy compared to other methods, such as CNN, SSENet and Inception v3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海洋球发布了新的文献求助10
刚刚
小小发布了新的文献求助10
刚刚
1秒前
vvvvvv发布了新的文献求助10
1秒前
2秒前
benbengouj完成签到,获得积分10
2秒前
wh完成签到,获得积分10
2秒前
小落看不完完成签到 ,获得积分10
2秒前
大个应助linlinWang采纳,获得10
3秒前
邓佳鑫Alan应助懒人采纳,获得10
3秒前
Disguise完成签到 ,获得积分10
3秒前
日月小完成签到,获得积分10
3秒前
A1youWe发布了新的文献求助10
3秒前
diu完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
4秒前
平淡访冬完成签到,获得积分10
4秒前
柴六斤发布了新的文献求助10
4秒前
啊就是地方就啊都是完成签到,获得积分10
4秒前
5秒前
5秒前
爱听歌的夏烟完成签到,获得积分10
5秒前
6秒前
堪雅寒完成签到,获得积分10
6秒前
spring079完成签到,获得积分10
6秒前
6秒前
linliqing完成签到,获得积分10
6秒前
6秒前
JamesPei应助happiness采纳,获得10
6秒前
flying蝈蝈完成签到,获得积分10
6秒前
vvvvvv完成签到,获得积分10
7秒前
7秒前
热心乐驹完成签到,获得积分10
8秒前
念念完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
123study0完成签到,获得积分10
9秒前
锂氧完成签到,获得积分10
9秒前
曼曼发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439