Concrete Crack Detection Based on Hybrid Residual Network and Graph Convolutional Network

邻接矩阵 计算机科学 残余物 图形 卷积神经网络 可靠性(半导体) 特征(语言学) 人工智能 模式识别(心理学) 结构工程
作者
Xiaosheng Huang,Xiao Zhou,Runtao Duan
出处
期刊:Lecture notes in electrical engineering 卷期号:: 74-81
标识
DOI:10.1007/978-981-16-9913-9_9
摘要

Crack is an important sign of degradation of health and reliability of civil infrastructure. It is of great significance to detect cracks automatically to maintain civil infrastructure. Many computer vision based concrete crack detection methods had been proposed, but currently, the proposed methods did not consider the relationship between categories when generates classification parameters, and ignored the global correlation between labels. To solve the problem, a concrete crack detection method based on hybrid residual network and graph convolutional network is proposed. Firstly, the crack features extraction network was constructed by using ResNet-101 to generate crack feature map. Then, the label matrix of crack feature maps and the adjacency matrix according to the co-occurrence relationship between labels of crack images were constructed and generated respectively. Finally, the concrete crack detection network was constructed by using the graph convolutional network to detect concrete cracks. In order to verify the detection result, a comparative experiment on BCD and SDNET2018 data sets was conducted. The experimental results show that this method has better accuracy compared to other methods, such as CNN, SSENet and Inception v3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
开朗的风华完成签到,获得积分20
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
tuanheqi应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
tuanheqi应助科研通管家采纳,获得70
刚刚
刚刚
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
老大蒂亚戈应助月儿采纳,获得10
1秒前
1秒前
1秒前
2秒前
酷波er应助YYQ采纳,获得10
2秒前
龙傲天发布了新的文献求助10
2秒前
Saluzi发布了新的文献求助10
2秒前
3秒前
hkh发布了新的文献求助10
3秒前
简历完成签到,获得积分10
3秒前
3秒前
嘟嘟豆806完成签到 ,获得积分10
3秒前
怕黑以筠完成签到,获得积分10
3秒前
yuqinw完成签到,获得积分10
3秒前
充电宝应助云海老采纳,获得10
4秒前
星辰大海应助Maple采纳,获得10
4秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406