胶体金
纳米颗粒
膜
贪婪
细菌细胞结构
细菌
细菌外膜
纳米技术
大肠杆菌
材料科学
微生物学
化学
免疫
生物物理学
抗体
免疫系统
生物
生物化学
免疫学
遗传学
基因
作者
Weiwei Gao,Ronnie H. Fang,Soracha Thamphiwatana,Brian T. Luk,Jieming Li,Pavimol Angsantikul,Qiangzhe Zhang,Canbin Hu,Liangfang Zhang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2015-01-26
卷期号:15 (2): 1403-1409
被引量:383
摘要
Synthetic nanoparticles coated with cellular membranes have been increasingly explored to harness natural cell functions toward the development of novel therapeutic strategies. Herein, we report on a unique bacterial membrane-coated nanoparticle system as a new and exciting antibacterial vaccine. Using Escherichia coli as a model pathogen, we collect bacterial outer membrane vesicles (OMVs) and successfully coat them onto small gold nanoparticles (AuNPs) with a diameter of 30 nm. The resulting bacterial membrane-coated AuNPs (BM-AuNPs) show markedly enhanced stability in biological buffer solutions. When injected subcutaneously, the BM-AuNPs induce rapid activation and maturation of dendritic cells in the lymph nodes of the vaccinated mice. In addition, vaccination with BM-AuNPs generates antibody responses that are durable and of higher avidity than those elicited by OMVs only. The BM-AuNPs also induce an elevated production of interferon gamma (INFγ) and interleukin-17 (IL-17), but not interleukin-4 (IL-4), indicating its capability of generating strong Th1 and Th17 biased cell responses against the source bacteria. These observed results demonstrate that using natural bacterial membranes to coat synthetic nanoparticles holds great promise for designing effective antibacterial vaccines.
科研通智能强力驱动
Strongly Powered by AbleSci AI