Surgical GAN: Towards real-time path planning for passive flexible tools in endovascular surgeries

计算机科学 运动规划 路径(计算) 手术计划 卷积神经网络 人工智能 实时计算 模拟 计算机视觉 外科 医学 机器人 计算机网络
作者
Yan Zhao,Yuxin Wang,Jianhua Zhang,X. Liu,Youxiang Li,Shuxiang Guo,Yang Xu,Shunming Hong
出处
期刊:Neurocomputing [Elsevier]
卷期号:500: 567-580 被引量:13
标识
DOI:10.1016/j.neucom.2022.05.044
摘要

Automatic surgical path planning of the passive flexible tool encounters a prohibitive challenge, typically in endovascular surgery (ES). The key problem is that unstructured surgical environment and tools' unpredictable motion is hard to be explicitly modeled. We propose a generative adversarial networks (GAN)-based framework (defined as surgical GAN) towards automatic guidewire path planning in real time for ES. A novel GAN architecture is proposed by combining convolutional neural networks (CNN) and long short-term memory networks (LSTM), which extracts and fuses the spatial features in medical images and temporal features of historical tool path as the conditional information. It inputs the surgical state information and continuously outputs the local future path of the guidewire tip. A training dataset (3.5*105 samples) is collected under laboratory conditions with 10 surgeons. Effects of different CNN architectures and path planning length on network performance are investigated. User experiments, with the tasks delivering the guidewire tip inside a vascular model (endovascular evaluator) from the aortic arch into the left common carotid artery (LCCA), left subclavian artery (LSCA), or brachiocephalic trunk, are conducted with 10 novice surgeons in an operating room. The results shows significant improvement of a path planning accuracy with surgical GAN compared with baseline networks (from 46.2%–69.78%) and the non-rigid registration method (72.94%). Results of user experiments demonstrate an overall better task performance with the guidance of planned surgical path. Collectively, surgical GAN can achieve real-time path planning of the guidewire in simulated ES, and holds great potential for novice training and robotic ES autonomy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的觅云完成签到,获得积分10
1秒前
科研通AI2S应助Lucifer采纳,获得10
1秒前
2秒前
2秒前
思源应助xixi采纳,获得10
3秒前
卢伟泽发布了新的文献求助10
4秒前
4秒前
所所应助Charlieite采纳,获得10
5秒前
慧慧子完成签到 ,获得积分10
5秒前
6秒前
科研通AI2S应助lingmuhuahua采纳,获得10
6秒前
8秒前
独特寒安发布了新的文献求助10
9秒前
wangtingyu发布了新的文献求助10
9秒前
9秒前
阿曼尼发布了新的文献求助30
11秒前
13秒前
123456完成签到,获得积分20
13秒前
二妹儿发布了新的文献求助10
13秒前
godgyw完成签到 ,获得积分10
14秒前
在水一方应助沾沾波采纳,获得10
14秒前
香蕉寒梅完成签到,获得积分10
15秒前
橙汁完成签到,获得积分10
17秒前
20秒前
烂漫碧玉发布了新的文献求助10
21秒前
二妹儿完成签到,获得积分10
21秒前
347完成签到,获得积分10
21秒前
汉堡包应助小峰采纳,获得10
21秒前
开拖拉机的医学僧完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
23秒前
Alisa发布了新的文献求助10
25秒前
后会无期完成签到,获得积分10
25秒前
郝宝真发布了新的文献求助10
25秒前
sssss发布了新的文献求助10
26秒前
27秒前
佩奇666完成签到,获得积分10
28秒前
28秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620