Mechanism of shear strength deterioration of soil-rock mixture after freeze–thaw cycles

岩土工程 材料科学 抗剪强度(土壤) 三轴剪切试验 直剪试验 剪切(地质) 摩擦角 地质学 复合材料 土壤水分 土壤科学
作者
Liyun Tang,Gang Li,Tao Luo,Long Jin,Yongtang Yu,Qiang Sun,Guoyu Li
出处
期刊:Cold Regions Science and Technology [Elsevier]
卷期号:200: 103585-103585 被引量:31
标识
DOI:10.1016/j.coldregions.2022.103585
摘要

The growth and melting of internal ice crystals reorganizing the pore structure and internal skeleton of soil-rock mixture (S-RM), which leads to the deterioration of the S-RM shear strength after freeze–thaw cycles and its strength characteristics after the cycles are different from the normal temperature one. Due to unclear S-RM strength deterioration mechanism after freeze–thaw cycles, stability of S-RM cutting slopes in cold regions cannot be effectively evaluated. In this paper, particle flow code (PFC) simulation as well as direct shear and nuclear magnetic resonance (NMR) tests were carried to study strength degradation behaviors and pore structure changes of S-RMs containing various amounts of rock after freeze–thaw cycles. The results show that the shear strength and internal friction angle of S-RM are no longer positively correlated with the rock content after the cycles, and the strength parameters will decrease at rock contents of above 45%. Based on the simulation test, shear band thickness variation after the cycles was quantitatively evaluated, and an innovative method to obtain the fluctuation value of shear failure surface was proposed. It is found that the change laws of shear band thickness and failure surface fluctuation value with rock content after the cycles are consistent with that of shear strength, and they all reach the maximum value when the rock content is 45%. Fractal theory was introduced for quantitative evaluation of changes in S-RM pore structure after the cycles, and combined with the strength parameter attenuation, the strength deterioration mechanism of S-RM was revealed: The deterioration of shear strength in samples containing low rock content is mainly due to changes in the contact form between particles caused by internal inclusion structure formation after the cycles. The deterioration of S-RM with rock content of 55% and 65% is mainly due to attenuation of the internal skeleton effect caused by the appearance of overhead structures. The internal pores and skeleton structure of the sample with 45% rock content have little change, so the attenuation changes of the strength parameters and the undulation value of the failure surface are minimal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江洋大盗完成签到,获得积分10
1秒前
1秒前
如意的平蝶完成签到,获得积分10
1秒前
彬9发布了新的文献求助10
2秒前
唠叨的明雪完成签到 ,获得积分10
2秒前
彳亍发布了新的文献求助10
2秒前
zmmm发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
优秀板栗完成签到,获得积分10
6秒前
6秒前
6秒前
wj发布了新的文献求助10
6秒前
6秒前
7秒前
moyanxuan发布了新的文献求助30
8秒前
无限的FF发布了新的文献求助30
8秒前
8秒前
Esther发布了新的文献求助10
8秒前
斯文败类应助赫灵竹采纳,获得10
8秒前
小闫闫完成签到,获得积分10
8秒前
董星星完成签到 ,获得积分10
9秒前
彬9完成签到,获得积分20
9秒前
ACEmeng发布了新的文献求助10
9秒前
今后应助kuka007采纳,获得10
9秒前
向秋发布了新的文献求助10
9秒前
carryxu发布了新的文献求助10
10秒前
天天快乐应助Refuel采纳,获得10
10秒前
10秒前
桐桐应助伶俐的人杰采纳,获得10
11秒前
共享精神应助zmmm采纳,获得10
13秒前
疯狂吃辣完成签到 ,获得积分10
13秒前
Jing发布了新的文献求助200
13秒前
Esther完成签到,获得积分10
14秒前
14秒前
眯眯眼的山柳完成签到 ,获得积分10
14秒前
苏素肃发布了新的文献求助10
15秒前
wj完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256232
求助须知:如何正确求助?哪些是违规求助? 2898362
关于积分的说明 8300853
捐赠科研通 2567530
什么是DOI,文献DOI怎么找? 1394545
科研通“疑难数据库(出版商)”最低求助积分说明 652858
邀请新用户注册赠送积分活动 630522