Opposing Effects of Response Time in Human–Chatbot Interaction

聊天机器人 阿凡达 期望理论 心理学 感知 社会心理学 计算机科学 人机交互 万维网 神经科学
作者
Ulrich Gnewuch,Stefan Morana,Marc T. P. Adam,Alexander Maedche
出处
期刊:Business & Information Systems Engineering [Springer Nature]
卷期号:64 (6): 773-791 被引量:60
标识
DOI:10.1007/s12599-022-00755-x
摘要

Abstract Research has shown that employing social cues (e.g., name, human-like avatar) in chatbot design enhances users’ social presence perceptions and their chatbot usage intentions. However, the picture is less clear for the social cue of chatbot response time. While some researchers argue that instant responses make chatbots appear unhuman-like, others suggest that delayed responses are perceived less positively. Drawing on social response theory and expectancy violations theory, this study investigates whether users’ prior experience with chatbots clarifies the inconsistencies in the literature. In a lab experiment ( N = 202), participants interacted with a chatbot that responded either instantly or with a delay. The results reveal that a delayed response time has opposing effects on social presence and usage intentions and shed light on the differences between novice users and experienced users – that is, those who have not interacted with a chatbot before vs. those who have. This study contributes to information systems literature by identifying prior experience as a key moderating factor that shapes users’ social responses to chatbots and by reconciling inconsistencies in the literature regarding the role of chatbot response time. For practitioners, this study points out a drawback of the widely adopted “one-design-fits-all” approach to chatbot design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北极星完成签到,获得积分10
刚刚
刚刚
刚刚
tingting给tingting的求助进行了留言
1秒前
小二郎应助果冻采纳,获得30
1秒前
斯文败类应助pp采纳,获得10
1秒前
慕青应助薛武采纳,获得10
1秒前
林一完成签到,获得积分10
2秒前
打打应助TingWan采纳,获得10
2秒前
张贵虎完成签到 ,获得积分10
2秒前
2秒前
田様应助arT采纳,获得10
3秒前
航航完成签到,获得积分10
3秒前
echooo发布了新的文献求助10
4秒前
独特的鹅发布了新的文献求助10
5秒前
所所应助lawang采纳,获得10
5秒前
李喵喵完成签到,获得积分20
5秒前
充电宝应助lawang采纳,获得10
5秒前
万能图书馆应助JLLLLLLLL采纳,获得30
5秒前
明理的安莲完成签到,获得积分10
5秒前
SciGPT应助lawang采纳,获得10
5秒前
完美世界应助lawang采纳,获得10
5秒前
大模型应助lawang采纳,获得10
5秒前
调皮嫣娆发布了新的文献求助10
5秒前
希望天下0贩的0应助lawang采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Owen应助lawang采纳,获得10
6秒前
在水一方应助lawang采纳,获得10
6秒前
潇洒吐司发布了新的文献求助10
6秒前
LYB吕发布了新的文献求助10
6秒前
7秒前
青年才俊发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
脑洞疼应助AAAA采纳,获得10
8秒前
邱燈发布了新的文献求助20
8秒前
yupguo完成签到,获得积分10
8秒前
kiko完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163