A research on rubbing feature extraction based on information fusion and signal decomposition algorithm

拓本 转子(电动) 主成分分析 算法 定子 特征提取 计算机科学 断层(地质) 振动 人工智能 模式识别(心理学) 控制理论(社会学) 工程类 声学 物理 控制(管理) 机械工程 地震学 地质学
作者
Mingyue Yu,Haonan Cong,Wangying Chen
出处
期刊:Noise & Vibration Worldwide [SAGE]
卷期号:53 (4-5): 172-188
标识
DOI:10.1177/09574565221093224
摘要

To effectively identify the rotor–stator rubbing fault, the paper has brought forward a method combining principal component analysis (PCA), intrinsic time-scale decomposition (ITD), and information entropy (IE). Firstly, in considering that the characteristic information of faults extracted from the information collected by single sensor is not complete or comprehensive, the approach blends the vibration signals collected from 4 different positions at the same moment based on PCA algorithm; secondly, regarding that ITD algorithm can effectively avoid the problems of poor adaptivity and end effect, blended signals are broken down based on ITD algorithm; thirdly, calculate the IE of self-correlation function of each PRC based on the fact that the smaller IE is, the less confusion system has and the easier it is to extract fault characteristics, and treat the self-correlation function of PRC related with the minimum IE as optimal component to represent fault characteristics; fourthly, characteristic extraction of rotor–stator rubbing fault and identification are done on the basis of the frequency spectrum of optimal component. To prove the availability of method, vibration signals are subjected to validation and analysis, which are collected from different rotation speeds, casing thicknesses, rubbing positions, and types. The result indicates that the proposed PCA–ITD–IE can equally and effectively extract the characteristics of rotor–stator rubbing faults of aero-engine involved in various conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助真实的友采纳,获得10
刚刚
完美世界应助liuynnn采纳,获得30
刚刚
1秒前
ANXU完成签到,获得积分10
1秒前
小L发布了新的文献求助20
1秒前
pishuang发布了新的文献求助10
1秒前
2秒前
Hh发布了新的文献求助10
2秒前
丘比特应助czz014采纳,获得10
3秒前
4秒前
栀子完成签到,获得积分10
4秒前
4秒前
嘻嘻哈哈应助Xiaoxiao采纳,获得20
5秒前
小乌龟完成签到,获得积分10
5秒前
挽忆逍遥完成签到 ,获得积分10
5秒前
研究侠完成签到,获得积分10
6秒前
coolplex发布了新的文献求助10
6秒前
lsh发布了新的文献求助10
6秒前
6秒前
Owen应助哈哈哈哈采纳,获得10
7秒前
7秒前
QXR完成签到,获得积分10
7秒前
7秒前
小手冰凉完成签到,获得积分10
7秒前
共享精神应助陈柚瑾采纳,获得10
7秒前
CodeCraft应助鲤鱼凡松采纳,获得10
8秒前
琳琳发布了新的文献求助20
8秒前
完美世界应助mdjinij采纳,获得10
8秒前
顶呱呱完成签到 ,获得积分10
8秒前
酷波er应助zhuzhu的江湖采纳,获得10
8秒前
8秒前
wanci应助耶耶粘豆包采纳,获得10
9秒前
杳子尧发布了新的文献求助10
10秒前
威武外套完成签到,获得积分10
10秒前
充电宝应助cun采纳,获得10
11秒前
Mayily完成签到,获得积分10
11秒前
JamesPei应助DTP采纳,获得10
11秒前
梨子发布了新的文献求助200
11秒前
12秒前
田様应助Azyyyy采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874