Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青春奇谈完成签到,获得积分10
1秒前
1秒前
科研通AI6应助高志远采纳,获得10
1秒前
2秒前
2秒前
cwnboy2008完成签到,获得积分10
2秒前
3秒前
Flex完成签到,获得积分10
3秒前
3秒前
3秒前
bkagyin应助zh采纳,获得10
4秒前
踏实豪英发布了新的文献求助10
4秒前
春困秋乏完成签到,获得积分10
4秒前
kbc发布了新的文献求助10
4秒前
共享精神应助zheweitang采纳,获得10
5秒前
英俊的铭应助Ashe采纳,获得10
5秒前
6秒前
jianyulv发布了新的文献求助10
6秒前
7秒前
天天快乐应助机灵冥采纳,获得10
7秒前
7秒前
阔达的乘云完成签到 ,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
烟花应助甜甜醉香采纳,获得10
7秒前
YUE发布了新的文献求助10
8秒前
RUC_Zhao完成签到,获得积分10
8秒前
8秒前
合适凡发布了新的文献求助10
8秒前
小晓俊完成签到,获得积分20
8秒前
牛飞了牛上天了完成签到,获得积分10
9秒前
研友_VZG7GZ应助幸福来敲门采纳,获得10
9秒前
9秒前
9秒前
Cixiii发布了新的文献求助10
10秒前
mhpvv发布了新的文献求助10
11秒前
11秒前
peng发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551649
求助须知:如何正确求助?哪些是违规求助? 4636518
关于积分的说明 14644292
捐赠科研通 4578369
什么是DOI,文献DOI怎么找? 2510780
邀请新用户注册赠送积分活动 1486083
关于科研通互助平台的介绍 1457449