Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
漱泉枕石完成签到,获得积分10
2秒前
华仔应助edtaa采纳,获得10
2秒前
田様应助euy采纳,获得10
2秒前
外向汽车发布了新的文献求助10
3秒前
Nextf1sh完成签到,获得积分10
3秒前
xxy关注了科研通微信公众号
4秒前
科研通AI5应助张立敏采纳,获得10
6秒前
6秒前
7秒前
铁甲小宝完成签到,获得积分10
7秒前
77完成签到,获得积分10
7秒前
SallyLuo完成签到,获得积分10
7秒前
8秒前
fdawn完成签到,获得积分10
8秒前
旺仔糖完成签到,获得积分20
9秒前
上官若男应助闹心采纳,获得10
10秒前
量子星尘发布了新的文献求助150
10秒前
大米发布了新的文献求助30
10秒前
秋风暖暖发布了新的文献求助10
11秒前
爆米花应助萧萧萧采纳,获得10
12秒前
微笑不可完成签到 ,获得积分10
12秒前
带着太阳去旅行完成签到,获得积分20
12秒前
千日粉发布了新的文献求助10
13秒前
13秒前
edtaa完成签到,获得积分10
14秒前
天天开心完成签到,获得积分10
14秒前
漱泉枕石发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
xu完成签到,获得积分20
16秒前
bob完成签到,获得积分10
19秒前
19秒前
田様应助鲤鱼烙采纳,获得10
20秒前
Sea_U应助Sylvie采纳,获得10
20秒前
张立敏发布了新的文献求助10
21秒前
淼队发布了新的文献求助10
21秒前
共享精神应助千日粉采纳,获得10
22秒前
长情萤发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599