Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷菲音完成签到,获得积分10
1秒前
苏苏完成签到 ,获得积分10
4秒前
5秒前
mmooo完成签到 ,获得积分10
5秒前
笑嘻嘻完成签到,获得积分10
5秒前
一味愚完成签到,获得积分10
6秒前
喜汁郎完成签到,获得积分10
10秒前
情怀应助yangyang采纳,获得10
10秒前
12秒前
首席医官完成签到,获得积分10
15秒前
15秒前
001完成签到 ,获得积分10
18秒前
yyyyyyyyyy完成签到 ,获得积分10
18秒前
Jiangsun完成签到,获得积分10
19秒前
拾一完成签到,获得积分10
22秒前
典雅的语海完成签到,获得积分10
22秒前
123123完成签到,获得积分10
23秒前
追寻白桃完成签到,获得积分10
24秒前
仁爱水之完成签到 ,获得积分10
26秒前
团团团完成签到 ,获得积分10
26秒前
Lisztan完成签到,获得积分10
26秒前
Polymer72应助xzy998采纳,获得20
26秒前
阔达的太阳完成签到,获得积分10
26秒前
李浩完成签到 ,获得积分10
29秒前
平淡寻菡完成签到,获得积分10
30秒前
鸭梨很大完成签到 ,获得积分10
31秒前
阿枫完成签到,获得积分10
34秒前
道友等等我完成签到,获得积分0
35秒前
科研蚂蚁完成签到,获得积分10
36秒前
玲家傻妞完成签到 ,获得积分10
37秒前
37秒前
XZZ完成签到 ,获得积分10
38秒前
温暖宛筠完成签到,获得积分10
40秒前
文静醉易完成签到,获得积分10
43秒前
锂为什么叫做锂完成签到,获得积分10
43秒前
jjj完成签到 ,获得积分10
44秒前
44秒前
qin希望完成签到,获得积分0
44秒前
huangyao完成签到 ,获得积分10
46秒前
笑林完成签到 ,获得积分10
48秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339162
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628112
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180