亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马百招完成签到,获得积分10
刚刚
Jasper应助chichqq采纳,获得30
6秒前
17秒前
Sandy应助史巴兰采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
阿亮完成签到,获得积分10
25秒前
testmanfuxk完成签到,获得积分10
25秒前
39秒前
46秒前
勿惏发布了新的文献求助10
46秒前
cxy完成签到 ,获得积分10
48秒前
丸子完成签到 ,获得积分10
52秒前
dax大雄完成签到 ,获得积分10
55秒前
yangzai完成签到 ,获得积分10
57秒前
1分钟前
好巧完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
孤鸿.完成签到 ,获得积分10
1分钟前
1分钟前
rrrrrrry发布了新的文献求助10
1分钟前
2分钟前
TXZ06发布了新的文献求助30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
勿惏完成签到,获得积分10
2分钟前
Yaoz完成签到,获得积分10
2分钟前
2分钟前
Anto完成签到,获得积分20
2分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
iman完成签到,获得积分10
3分钟前
3分钟前
无辜笑容发布了新的文献求助10
3分钟前
从容芮完成签到,获得积分0
3分钟前
3分钟前
3分钟前
苹果发布了新的文献求助10
3分钟前
caca完成签到,获得积分0
3分钟前
大模型应助cube半肥半瘦采纳,获得10
3分钟前
chichqq发布了新的文献求助30
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957035
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234071
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264