亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofang发布了新的文献求助10
3秒前
5秒前
anru发布了新的文献求助10
10秒前
11秒前
14秒前
1234发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
幽默梦之完成签到 ,获得积分10
18秒前
24秒前
27秒前
anru完成签到,获得积分10
27秒前
啦啦啦啦发布了新的文献求助10
30秒前
wzyyyyue完成签到 ,获得积分10
31秒前
许某希发布了新的文献求助10
33秒前
善学以致用应助啦啦啦啦采纳,获得10
36秒前
36秒前
优雅山柏发布了新的文献求助10
42秒前
热情的觅云完成签到 ,获得积分10
43秒前
1234完成签到,获得积分10
44秒前
已知中的未知完成签到 ,获得积分10
45秒前
54秒前
杨江华完成签到,获得积分10
56秒前
殷音完成签到,获得积分10
1分钟前
星辰大海应助殷音采纳,获得10
1分钟前
香蕉觅云应助风中的元灵采纳,获得10
1分钟前
1分钟前
Chouvikin完成签到,获得积分10
1分钟前
Jerry完成签到 ,获得积分10
1分钟前
孙漪发布了新的文献求助10
1分钟前
1分钟前
zybbb完成签到 ,获得积分10
1分钟前
Verity应助科研通管家采纳,获得10
1分钟前
负责冰烟完成签到 ,获得积分10
1分钟前
丘比特应助meant采纳,获得10
1分钟前
23_43完成签到,获得积分10
1分钟前
万能图书馆应助无语的傥采纳,获得10
1分钟前
小二郎应助孙漪采纳,获得10
1分钟前
1分钟前
龙行天下完成签到 ,获得积分10
1分钟前
无语的傥完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681410
求助须知:如何正确求助?哪些是违规求助? 5007317
关于积分的说明 15175495
捐赠科研通 4840925
什么是DOI,文献DOI怎么找? 2594681
邀请新用户注册赠送积分活动 1547728
关于科研通互助平台的介绍 1505719