已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小李完成签到 ,获得积分10
2秒前
jingutaimi完成签到,获得积分10
2秒前
NexusExplorer应助文静不凡采纳,获得10
8秒前
慕青应助Dylan采纳,获得10
10秒前
10秒前
WENBENDING完成签到,获得积分10
11秒前
紫薰完成签到,获得积分10
12秒前
大模型应助明亮无颜采纳,获得10
13秒前
aldehyde应助yunjian1583采纳,获得100
14秒前
CMUSK完成签到 ,获得积分10
15秒前
闪闪蜜粉完成签到 ,获得积分10
15秒前
羊村霸总懒大王完成签到 ,获得积分10
16秒前
HXY发布了新的文献求助10
16秒前
yiyi完成签到 ,获得积分10
17秒前
上好佳完成签到,获得积分10
18秒前
18秒前
20秒前
simon完成签到 ,获得积分10
20秒前
今天很ok完成签到 ,获得积分10
22秒前
23秒前
韩东瑾发布了新的文献求助10
24秒前
jiajia完成签到 ,获得积分10
24秒前
24秒前
菜根谭完成签到 ,获得积分10
25秒前
白夜完成签到 ,获得积分10
25秒前
坚强紫山完成签到,获得积分10
25秒前
迅速的易巧完成签到 ,获得积分10
25秒前
隐形曼青应助MM采纳,获得10
26秒前
雨琴完成签到,获得积分10
26秒前
tovfix发布了新的文献求助10
26秒前
cindy发布了新的文献求助10
27秒前
28秒前
艳阳天完成签到 ,获得积分10
30秒前
30秒前
002完成签到,获得积分10
30秒前
31秒前
Wj发布了新的文献求助10
31秒前
Tsin778完成签到 ,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469836
求助须知:如何正确求助?哪些是违规求助? 4572836
关于积分的说明 14337266
捐赠科研通 4499758
什么是DOI,文献DOI怎么找? 2465216
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428246