Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助神勇乐安采纳,获得10
刚刚
1秒前
yyyg发布了新的文献求助10
1秒前
1秒前
小二郎应助时刻保持质疑采纳,获得10
2秒前
i喝凉白开完成签到 ,获得积分10
2秒前
beiyue完成签到,获得积分10
2秒前
丘比特应助keyanrubbish采纳,获得10
2秒前
流浪应助付研琪采纳,获得10
3秒前
害羞鬼完成签到,获得积分10
3秒前
3秒前
韩麒嘉发布了新的文献求助10
4秒前
zywzyw发布了新的文献求助10
4秒前
4秒前
FashionBoy应助cc采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
JiA完成签到,获得积分10
5秒前
小任完成签到,获得积分10
6秒前
果粒橙发布了新的文献求助10
6秒前
斯文败类应助麻辣老妖婆采纳,获得10
6秒前
花飞飞凡发布了新的文献求助10
6秒前
温暖静柏完成签到,获得积分20
7秒前
7秒前
科研通AI6应助myt采纳,获得10
7秒前
zhanng发布了新的文献求助10
8秒前
奇遇里发布了新的文献求助10
8秒前
李健的小迷弟应助承乐采纳,获得30
9秒前
小马甲应助Jian采纳,获得10
9秒前
卢秋宇完成签到,获得积分20
10秒前
叶子完成签到,获得积分10
10秒前
瞿琼瑶发布了新的文献求助80
11秒前
11秒前
苦苦发布了新的文献求助10
11秒前
11秒前
12秒前
华仔应助多情以山采纳,获得10
12秒前
奔跑西木发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836