Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润润轩轩完成签到 ,获得积分10
1秒前
pingan完成签到,获得积分10
1秒前
pingan发布了新的文献求助10
4秒前
czxy完成签到,获得积分10
5秒前
肥肥完成签到 ,获得积分10
5秒前
zhuxf完成签到 ,获得积分10
6秒前
8秒前
乐观健柏完成签到,获得积分10
8秒前
Hilda007完成签到,获得积分0
8秒前
陈龙平完成签到 ,获得积分10
8秒前
快乐疯样完成签到,获得积分10
8秒前
微笑襄完成签到 ,获得积分10
9秒前
研友_nPb9e8完成签到,获得积分10
11秒前
Tsuki完成签到,获得积分10
11秒前
13秒前
15秒前
16秒前
俭朴的世界完成签到 ,获得积分0
17秒前
蟑先生发布了新的文献求助10
18秒前
20秒前
vvvaee完成签到 ,获得积分10
20秒前
Aeeeeeeon发布了新的文献求助10
22秒前
Garfield完成签到 ,获得积分10
24秒前
小潘完成签到 ,获得积分10
24秒前
NexusExplorer应助一郭红烧肉采纳,获得10
25秒前
chiyudoubao完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
闪闪芯完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
Yz完成签到 ,获得积分10
29秒前
11完成签到 ,获得积分10
30秒前
布里田完成签到 ,获得积分10
30秒前
PDIF-CN2完成签到,获得积分10
34秒前
fighting完成签到 ,获得积分10
34秒前
尘曦完成签到,获得积分10
34秒前
大模型应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
昀松应助科研通管家采纳,获得10
35秒前
zhuao应助科研通管家采纳,获得10
35秒前
wy应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081