Clustering method with axiomatization to support failure mode and effect analysis

公理 聚类分析 失效模式及影响分析 公理系统 功能(生物学) 计算机科学 数据挖掘 数学 可靠性工程 工程类 人工智能 几何学 进化生物学 生物
作者
Yucheng Dong,Siqi Wu,Xiaoping Shi,Yao Li,Francisco Chiclana
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:55 (7): 657-671 被引量:7
标识
DOI:10.1080/24725854.2022.2068812
摘要

Failure Mode and Effect Analysis (FMEA) is a highly structured risk-prevention management process that improves the reliability and safety of a system. This article investigates one of the most critical issues in FMEA practice: Clustering failure modes based on their risks. In the failure mode clustering problem, all identified failure modes need to be assigned to several predefined and risk-ordered categories to manage their risks. We model the clustering of failure modes through multi-expert multiple criteria decision making with an additive value function, and call it the additive N-clustering problem. We begin by proposing six axioms that describe an ideal clustering method in the additive N-clustering problem, and find that the EXogenous Clustering Method (EXCM), where category thresholds can be exogenously provided, is ideal (Exogenous Possibility Theorem), whereas any endogenous clustering method, where the clustering is determined endogenously in the given method, cannot satisfy all six axioms simultaneously (Endogenous Impossibility Theorem). In practice, endogenous clustering methods are important, due to the difficulty in providing accurate and reasonable category thresholds of the EXCM. Therefore, we propose the Consensus-based ENdogenous Clustering Method (CENCM) and discuss its axiomatic properties. We also apply the CENCM to the SARS-CoV-2 prevention case and justify the CENCM through axiomatic comparisons and a detailed simulation experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙果果完成签到,获得积分10
2秒前
PG发布了新的文献求助10
2秒前
bkagyin应助曾经如风采纳,获得10
2秒前
3秒前
wen发布了新的文献求助10
3秒前
rpe发布了新的文献求助10
4秒前
5秒前
简单发布了新的文献求助10
7秒前
Shanglinqin完成签到,获得积分10
8秒前
佰态发布了新的文献求助10
9秒前
紫陌发布了新的文献求助10
9秒前
10秒前
gusgusgus发布了新的文献求助30
10秒前
健壮曼凡完成签到 ,获得积分10
12秒前
13秒前
温婉的樱桃完成签到,获得积分10
14秒前
蜉蝣完成签到,获得积分10
15秒前
16秒前
wang发布了新的文献求助10
17秒前
研友_VZG7GZ应助聪明的青雪采纳,获得10
17秒前
开朗曲奇发布了新的文献求助20
19秒前
谦让的纸鹤关注了科研通微信公众号
20秒前
20秒前
22秒前
gusgusgus完成签到,获得积分10
23秒前
gsj完成签到,获得积分10
23秒前
LiJing666完成签到,获得积分10
23秒前
CipherSage应助rpe采纳,获得10
24秒前
24秒前
24秒前
简单完成签到,获得积分10
25秒前
yookia应助wyy采纳,获得10
26秒前
Ring完成签到 ,获得积分10
27秒前
28秒前
LiJing666发布了新的文献求助10
28秒前
今后应助LYS采纳,获得10
30秒前
30秒前
十五完成签到,获得积分10
31秒前
沉默清完成签到 ,获得积分10
31秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382