Clustering method with axiomatization to support failure mode and effect analysis

公理 聚类分析 失效模式及影响分析 公理系统 功能(生物学) 计算机科学 数据挖掘 数学 可靠性工程 工程类 人工智能 几何学 进化生物学 生物
作者
Yucheng Dong,Siqi Wu,Xiaoping Shi,Yao Li,Francisco Chiclana
出处
期刊:IISE transactions [Informa]
卷期号:55 (7): 657-671 被引量:7
标识
DOI:10.1080/24725854.2022.2068812
摘要

Failure Mode and Effect Analysis (FMEA) is a highly structured risk-prevention management process that improves the reliability and safety of a system. This article investigates one of the most critical issues in FMEA practice: Clustering failure modes based on their risks. In the failure mode clustering problem, all identified failure modes need to be assigned to several predefined and risk-ordered categories to manage their risks. We model the clustering of failure modes through multi-expert multiple criteria decision making with an additive value function, and call it the additive N-clustering problem. We begin by proposing six axioms that describe an ideal clustering method in the additive N-clustering problem, and find that the EXogenous Clustering Method (EXCM), where category thresholds can be exogenously provided, is ideal (Exogenous Possibility Theorem), whereas any endogenous clustering method, where the clustering is determined endogenously in the given method, cannot satisfy all six axioms simultaneously (Endogenous Impossibility Theorem). In practice, endogenous clustering methods are important, due to the difficulty in providing accurate and reasonable category thresholds of the EXCM. Therefore, we propose the Consensus-based ENdogenous Clustering Method (CENCM) and discuss its axiomatic properties. We also apply the CENCM to the SARS-CoV-2 prevention case and justify the CENCM through axiomatic comparisons and a detailed simulation experiment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助GLM采纳,获得10
1秒前
1秒前
华仔应助魔幻安筠采纳,获得10
1秒前
bliss完成签到,获得积分10
1秒前
左丘易梦完成签到,获得积分10
2秒前
2秒前
tang应助虚心的岩采纳,获得10
2秒前
苔原猫咪甜甜圈完成签到,获得积分10
2秒前
尹善冰完成签到,获得积分10
2秒前
aaa完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
大圣来也发布了新的文献求助10
3秒前
在水一方应助11采纳,获得10
4秒前
4秒前
Wind应助愉快小猪采纳,获得10
5秒前
10086发布了新的文献求助10
5秒前
上官若男应助无心的月亮采纳,获得10
6秒前
aaa发布了新的文献求助10
6秒前
6秒前
6秒前
Alan发布了新的文献求助10
6秒前
得意黑发布了新的文献求助10
6秒前
Honghao完成签到,获得积分10
7秒前
stiger应助111采纳,获得50
7秒前
ppat5012发布了新的文献求助10
7秒前
zhangsf88完成签到,获得积分10
7秒前
ioii完成签到,获得积分10
7秒前
情怀应助JansonLin采纳,获得10
7秒前
左丘易梦发布了新的文献求助10
7秒前
7秒前
8秒前
hcy完成签到,获得积分10
8秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
guozizi应助科研通管家采纳,获得20
9秒前
王w应助科研通管家采纳,获得30
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444