Fast Predictions of Aircraft Aerodynamics Using Deep-Learning Techniques

空气动力学 翼型 计算机科学 插值(计算机图形学) 深度学习 人工神经网络 跨音速 不确定度量化 航空航天工程 人工智能 机器学习 工程类 运动(物理)
作者
Christian Sabater,Philipp Stürmer,Philipp Bekemeyer
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (9): 5249-5261 被引量:59
标识
DOI:10.2514/1.j061234
摘要

The numerical analysis of aerodynamic components based on the Reynolds–averaged Navier–Stokes equations has become critical for the design of transport aircraft but still entails large computational cost. Simulating a multitude of different flow conditions with high-fidelity methods as required for loads analysis or aerodynamic shape optimization is still prohibitive. Within the past few years, the application of machine learning methods has been proposed as a potential way to overcome these shortcomings. This is leading toward a new data-driven paradigm for the modeling of physical problems. The objective of this paper is the development of a deep-learning methodology for the prediction of aircraft surface pressure distributions and the rigorous comparison with existing state-of-the-art nonintrusive reduced-order models. Bayesian optimization techniques are employed to efficiently determine optimal hyperparameters for all deep neural networks. Three data-driven methods which are Gaussian processes, proper orthogonal decomposition combined with an interpolation technique, and deep learning are investigated. The results are compared for a two-dimensional airfoil case and the NASA Common Research Model transport aircraft as a relevant three-dimensional case. Results show that all methods are able to properly predict the surface pressure distribution at subsonic conditions. In transonic flow, when shock waves and separation lead to nonlinearities, deep-learning methods outperform the others by also capturing the shock wave location and strength accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
fap发布了新的文献求助10
4秒前
4秒前
lulu发布了新的文献求助10
5秒前
5秒前
小牛马关注了科研通微信公众号
5秒前
顺利的飞荷完成签到,获得积分0
8秒前
9秒前
9秒前
LLL发布了新的文献求助10
10秒前
Tang完成签到 ,获得积分10
10秒前
学医的沣一完成签到,获得积分10
10秒前
怡然的幻灵完成签到,获得积分10
10秒前
好运连连发布了新的文献求助10
11秒前
11秒前
非要叫我起个昵称完成签到,获得积分10
12秒前
12秒前
研酒生发布了新的文献求助10
13秒前
Moment完成签到 ,获得积分10
13秒前
王子怡发布了新的文献求助10
13秒前
16秒前
热烈的玛丽完成签到,获得积分10
17秒前
18秒前
18秒前
sanmochuan发布了新的文献求助10
18秒前
19秒前
顺心的雅绿完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
jouholly发布了新的文献求助10
23秒前
lanchong发布了新的文献求助10
23秒前
23秒前
李爱国应助牛马采纳,获得10
24秒前
BoYoung完成签到,获得积分10
24秒前
seven发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076