Fast Predictions of Aircraft Aerodynamics Using Deep-Learning Techniques

空气动力学 翼型 计算机科学 插值(计算机图形学) 深度学习 人工神经网络 跨音速 不确定度量化 航空航天工程 人工智能 机器学习 工程类 运动(物理)
作者
Christian Sabater,Philipp Stürmer,Philipp Bekemeyer
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (9): 5249-5261 被引量:36
标识
DOI:10.2514/1.j061234
摘要

The numerical analysis of aerodynamic components based on the Reynolds–averaged Navier–Stokes equations has become critical for the design of transport aircraft but still entails large computational cost. Simulating a multitude of different flow conditions with high-fidelity methods as required for loads analysis or aerodynamic shape optimization is still prohibitive. Within the past few years, the application of machine learning methods has been proposed as a potential way to overcome these shortcomings. This is leading toward a new data-driven paradigm for the modeling of physical problems. The objective of this paper is the development of a deep-learning methodology for the prediction of aircraft surface pressure distributions and the rigorous comparison with existing state-of-the-art nonintrusive reduced-order models. Bayesian optimization techniques are employed to efficiently determine optimal hyperparameters for all deep neural networks. Three data-driven methods which are Gaussian processes, proper orthogonal decomposition combined with an interpolation technique, and deep learning are investigated. The results are compared for a two-dimensional airfoil case and the NASA Common Research Model transport aircraft as a relevant three-dimensional case. Results show that all methods are able to properly predict the surface pressure distribution at subsonic conditions. In transonic flow, when shock waves and separation lead to nonlinearities, deep-learning methods outperform the others by also capturing the shock wave location and strength accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳妹儿完成签到,获得积分10
刚刚
bubble完成签到,获得积分10
刚刚
打打应助Mr.Su采纳,获得10
1秒前
Kidsama完成签到,获得积分10
2秒前
TT完成签到,获得积分10
2秒前
小马甲应助o30采纳,获得10
3秒前
3秒前
3秒前
4秒前
sunnyfish007发布了新的文献求助10
4秒前
4秒前
活泼苑博完成签到,获得积分10
5秒前
5秒前
顺利的雁发布了新的文献求助30
5秒前
standhuang完成签到,获得积分10
7秒前
7秒前
研友_VZGvVn发布了新的文献求助10
7秒前
传统的翠阳完成签到,获得积分20
8秒前
8秒前
王振军发布了新的文献求助10
8秒前
ZMY发布了新的文献求助10
9秒前
9秒前
感动的小鸽子完成签到,获得积分10
10秒前
10秒前
10秒前
pop完成签到,获得积分10
10秒前
10秒前
自觉的绿蕊关注了科研通微信公众号
12秒前
smoli发布了新的文献求助10
12秒前
12秒前
12秒前
白子双完成签到,获得积分10
12秒前
lin应助最牛的kangkang采纳,获得10
13秒前
zhangxinan完成签到,获得积分10
13秒前
CipherSage应助小熊采纳,获得20
13秒前
栗子完成签到,获得积分10
13秒前
13秒前
o30发布了新的文献求助10
14秒前
14秒前
任志政完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827