Fast Predictions of Aircraft Aerodynamics Using Deep-Learning Techniques

空气动力学 翼型 计算机科学 插值(计算机图形学) 深度学习 人工神经网络 跨音速 不确定度量化 航空航天工程 人工智能 机器学习 工程类 运动(物理)
作者
Christian Sabater,Philipp Stürmer,Philipp Bekemeyer
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (9): 5249-5261 被引量:59
标识
DOI:10.2514/1.j061234
摘要

The numerical analysis of aerodynamic components based on the Reynolds–averaged Navier–Stokes equations has become critical for the design of transport aircraft but still entails large computational cost. Simulating a multitude of different flow conditions with high-fidelity methods as required for loads analysis or aerodynamic shape optimization is still prohibitive. Within the past few years, the application of machine learning methods has been proposed as a potential way to overcome these shortcomings. This is leading toward a new data-driven paradigm for the modeling of physical problems. The objective of this paper is the development of a deep-learning methodology for the prediction of aircraft surface pressure distributions and the rigorous comparison with existing state-of-the-art nonintrusive reduced-order models. Bayesian optimization techniques are employed to efficiently determine optimal hyperparameters for all deep neural networks. Three data-driven methods which are Gaussian processes, proper orthogonal decomposition combined with an interpolation technique, and deep learning are investigated. The results are compared for a two-dimensional airfoil case and the NASA Common Research Model transport aircraft as a relevant three-dimensional case. Results show that all methods are able to properly predict the surface pressure distribution at subsonic conditions. In transonic flow, when shock waves and separation lead to nonlinearities, deep-learning methods outperform the others by also capturing the shock wave location and strength accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwang完成签到,获得积分10
刚刚
Jonathan完成签到,获得积分10
刚刚
羊羊发布了新的文献求助10
1秒前
榛糕李完成签到,获得积分10
2秒前
健忘芹完成签到,获得积分20
2秒前
2秒前
3秒前
bkagyin应助摆哥采纳,获得10
4秒前
刘宸希完成签到 ,获得积分10
4秒前
6秒前
辛勤夜柳发布了新的文献求助10
6秒前
7秒前
8秒前
打打应助怕孤独的海瑶采纳,获得10
8秒前
Zenia应助小鱼采纳,获得10
9秒前
9秒前
默默的斑马完成签到,获得积分10
9秒前
科研大印发布了新的文献求助10
10秒前
Lucas应助RunsenXu采纳,获得10
10秒前
科研通AI6应助www采纳,获得10
10秒前
shuang完成签到 ,获得积分10
11秒前
Ysk完成签到,获得积分10
11秒前
脑洞疼应助MCL1021采纳,获得10
12秒前
智丹发布了新的文献求助10
13秒前
sci来来来完成签到,获得积分10
13秒前
wlscj给传统的孤丝的求助进行了留言
13秒前
WTaMi发布了新的文献求助10
14秒前
朱博超发布了新的文献求助10
15秒前
傻子也能搞学术吗完成签到 ,获得积分10
15秒前
16秒前
16秒前
无花果应助科研大印采纳,获得10
17秒前
Akim应助ltxinanjiao采纳,获得10
18秒前
sci来来来发布了新的文献求助10
18秒前
慕青应助LIO采纳,获得10
19秒前
19秒前
李爱国应助摆哥采纳,获得10
20秒前
21秒前
21秒前
www发布了新的文献求助10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544