Fast Predictions of Aircraft Aerodynamics Using Deep-Learning Techniques

空气动力学 翼型 计算机科学 插值(计算机图形学) 深度学习 人工神经网络 跨音速 不确定度量化 航空航天工程 人工智能 机器学习 工程类 运动(物理)
作者
Christian Sabater,Philipp Stürmer,Philipp Bekemeyer
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (9): 5249-5261 被引量:36
标识
DOI:10.2514/1.j061234
摘要

The numerical analysis of aerodynamic components based on the Reynolds–averaged Navier–Stokes equations has become critical for the design of transport aircraft but still entails large computational cost. Simulating a multitude of different flow conditions with high-fidelity methods as required for loads analysis or aerodynamic shape optimization is still prohibitive. Within the past few years, the application of machine learning methods has been proposed as a potential way to overcome these shortcomings. This is leading toward a new data-driven paradigm for the modeling of physical problems. The objective of this paper is the development of a deep-learning methodology for the prediction of aircraft surface pressure distributions and the rigorous comparison with existing state-of-the-art nonintrusive reduced-order models. Bayesian optimization techniques are employed to efficiently determine optimal hyperparameters for all deep neural networks. Three data-driven methods which are Gaussian processes, proper orthogonal decomposition combined with an interpolation technique, and deep learning are investigated. The results are compared for a two-dimensional airfoil case and the NASA Common Research Model transport aircraft as a relevant three-dimensional case. Results show that all methods are able to properly predict the surface pressure distribution at subsonic conditions. In transonic flow, when shock waves and separation lead to nonlinearities, deep-learning methods outperform the others by also capturing the shock wave location and strength accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
www完成签到 ,获得积分10
2秒前
4秒前
在水一方应助Frank采纳,获得10
4秒前
万能图书馆应助huangyao采纳,获得10
5秒前
5秒前
zhangxuhns完成签到,获得积分10
7秒前
8秒前
过儿完成签到,获得积分10
8秒前
明理的若灵完成签到 ,获得积分10
8秒前
科研狗发布了新的文献求助10
9秒前
豆子完成签到,获得积分10
9秒前
9秒前
路茄发布了新的文献求助10
9秒前
Byron完成签到,获得积分10
9秒前
小何HUHU发布了新的文献求助10
11秒前
13秒前
李洪卓完成签到,获得积分10
13秒前
dqhahaha发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
可爱的函函应助Lam采纳,获得10
16秒前
小陈完成签到,获得积分10
16秒前
俭朴一笑关注了科研通微信公众号
17秒前
路茄完成签到,获得积分10
19秒前
20秒前
hwq发布了新的文献求助10
20秒前
mimiya发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
司南应助请和我吃饭采纳,获得20
25秒前
欣喜冰珍完成签到,获得积分10
25秒前
songjin完成签到,获得积分10
25秒前
大鱼完成签到,获得积分20
25秒前
Vesper发布了新的文献求助20
25秒前
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247704
求助须知:如何正确求助?哪些是违规求助? 2890987
关于积分的说明 8265665
捐赠科研通 2559215
什么是DOI,文献DOI怎么找? 1388007
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627557