已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings

残余物 人工智能 计算机科学 核(代数) 断层(地质) 模式识别(心理学) 人工神经网络 特征提取 方位(导航) 块(置换群论) 卷积(计算机科学) 深度学习 振动 算法 地质学 物理 地震学 组合数学 量子力学 数学 几何学
作者
Yan Wang,Jie Liang,Xiaoguang Gu,Dan Ling,Haowen Yu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (20): 10615-10629 被引量:14
标识
DOI:10.1177/09544062221104598
摘要

Rolling bearing fault diagnosis is crucial to improve industrial safety and reliability. In recent years, intelligent fault diagnosis method represented by deep learning (DL) has been receiving increasing attention. In order to ameliorate the full training of the deep network, improve the model accuracy, and perfect the analysis of mechanical vibration signals with huge amount of information, a multi-scale attention mechanism residual network (MSA-ResNet) fault diagnosis method is proposed in this paper. First, an attention mechanism block is introduced to construct a new type of residual block combination. Second, a multi-scale structure is constructed by choosing an appropriate convolution kernel size. Finally, the overall framework of MSA-ResNet is constructed for efficient training and failure pattern recognition. The MSA-ResNet algorithm introduces an attention mechanism in each residual module of the residual network (ResNet), which improves the sensitivity to features. The features of different scales are obtained through the multi-scale convolution kernel, and the multi-scale feature extraction of complex nonlinear mechanical vibration signals is realized. The processing of original vibration signal rarely involves artificial interference, which is more conducive to industrial application of the proposed method. Diagnostic experiments are conducted on bearing datasets from the Case Western Reserve University (CWRU) and the Machinery Failure Prevention Technology (MFPT) to verify the effectiveness of the proposed method. The results illustrating the rolling bearing fault diagnosis method based on MSA-ResNet have advantages in multi-scale feature extraction, noise immunity, and fault classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助基金中中中采纳,获得10
刚刚
emergency关注了科研通微信公众号
1秒前
1秒前
无花果应助害羞的灵松采纳,获得10
1秒前
daltonz完成签到,获得积分10
1秒前
Liu889888发布了新的文献求助10
2秒前
香蕉觅云应助长歌采纳,获得10
4秒前
勤恳幻然发布了新的文献求助10
4秒前
miaowuuuuuuu完成签到 ,获得积分10
5秒前
Hello应助丸子的饼王采纳,获得50
6秒前
冷静的铅笔应助桃花落采纳,获得10
7秒前
科研通AI2S应助愉快的老五采纳,获得10
7秒前
田様应助Liu889888采纳,获得10
7秒前
思源应助江汛采纳,获得10
8秒前
Xm完成签到 ,获得积分10
9秒前
爆米花应助坚强幼晴采纳,获得10
9秒前
9秒前
FashionBoy应助Sky36001采纳,获得10
9秒前
居居应助余德熙采纳,获得10
10秒前
Lucas应助小白采纳,获得10
10秒前
Akim应助jiangyt采纳,获得10
12秒前
高高发布了新的文献求助10
14秒前
我是老大应助勤恳幻然采纳,获得10
15秒前
烂漫烧鹅完成签到,获得积分10
16秒前
17秒前
18秒前
wuli爽爽发布了新的文献求助20
18秒前
擦书完成签到 ,获得积分10
20秒前
儒雅晓霜发布了新的文献求助10
21秒前
冰河的羊发布了新的文献求助10
21秒前
科研美少女完成签到 ,获得积分10
21秒前
坚强幼晴完成签到,获得积分10
22秒前
24秒前
苏晓醒完成签到,获得积分10
24秒前
天天快乐应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
慕青应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150370
求助须知:如何正确求助?哪些是违规求助? 2801504
关于积分的说明 7845091
捐赠科研通 2459062
什么是DOI,文献DOI怎么找? 1308898
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727