亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings

残余物 人工智能 计算机科学 核(代数) 断层(地质) 模式识别(心理学) 人工神经网络 特征提取 方位(导航) 块(置换群论) 卷积(计算机科学) 深度学习 振动 算法 几何学 数学 组合数学 地震学 地质学 物理 量子力学
作者
Yan Wang,Jie Liang,Xiaoguang Gu,Dan Ling,Haowen Yu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (20): 10615-10629 被引量:21
标识
DOI:10.1177/09544062221104598
摘要

Rolling bearing fault diagnosis is crucial to improve industrial safety and reliability. In recent years, intelligent fault diagnosis method represented by deep learning (DL) has been receiving increasing attention. In order to ameliorate the full training of the deep network, improve the model accuracy, and perfect the analysis of mechanical vibration signals with huge amount of information, a multi-scale attention mechanism residual network (MSA-ResNet) fault diagnosis method is proposed in this paper. First, an attention mechanism block is introduced to construct a new type of residual block combination. Second, a multi-scale structure is constructed by choosing an appropriate convolution kernel size. Finally, the overall framework of MSA-ResNet is constructed for efficient training and failure pattern recognition. The MSA-ResNet algorithm introduces an attention mechanism in each residual module of the residual network (ResNet), which improves the sensitivity to features. The features of different scales are obtained through the multi-scale convolution kernel, and the multi-scale feature extraction of complex nonlinear mechanical vibration signals is realized. The processing of original vibration signal rarely involves artificial interference, which is more conducive to industrial application of the proposed method. Diagnostic experiments are conducted on bearing datasets from the Case Western Reserve University (CWRU) and the Machinery Failure Prevention Technology (MFPT) to verify the effectiveness of the proposed method. The results illustrating the rolling bearing fault diagnosis method based on MSA-ResNet have advantages in multi-scale feature extraction, noise immunity, and fault classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
17秒前
ding应助幸福的靳采纳,获得10
20秒前
独特觅翠发布了新的文献求助10
21秒前
Omni完成签到,获得积分10
26秒前
李健的小迷弟应助Benhnhk21采纳,获得30
35秒前
拼搏的奄发布了新的文献求助10
41秒前
1分钟前
Benhnhk21发布了新的文献求助30
1分钟前
独特觅翠发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
Ava应助独特觅翠采纳,获得10
2分钟前
悦耳画板完成签到,获得积分10
2分钟前
独特觅翠完成签到,获得积分10
2分钟前
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
独特觅翠发布了新的文献求助10
2分钟前
c445507405完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助haicheng采纳,获得10
3分钟前
苏苏弋完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
cometx发布了新的文献求助10
4分钟前
haicheng发布了新的文献求助10
4分钟前
lllll应助cometx采纳,获得10
4分钟前
cyb111完成签到 ,获得积分10
4分钟前
tianya完成签到,获得积分10
5分钟前
5分钟前
5分钟前
cyb111发布了新的文献求助10
5分钟前
贺俊龙发布了新的文献求助10
5分钟前
思源应助张艺雯采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
张艺雯发布了新的文献求助10
6分钟前
haicheng完成签到,获得积分20
6分钟前
树妖三三完成签到,获得积分10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233084
求助须知:如何正确求助?哪些是违规求助? 4402198
关于积分的说明 13699759
捐赠科研通 4268771
什么是DOI,文献DOI怎么找? 2342796
邀请新用户注册赠送积分活动 1339811
关于科研通互助平台的介绍 1296620