Multi-scale attention mechanism residual neural network for fault diagnosis of rolling bearings

残余物 人工智能 计算机科学 核(代数) 断层(地质) 模式识别(心理学) 人工神经网络 特征提取 方位(导航) 块(置换群论) 卷积(计算机科学) 深度学习 振动 算法 地质学 物理 地震学 组合数学 量子力学 数学 几何学
作者
Yan Wang,Jie Liang,Xiaoguang Gu,Dan Ling,Haowen Yu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:236 (20): 10615-10629 被引量:21
标识
DOI:10.1177/09544062221104598
摘要

Rolling bearing fault diagnosis is crucial to improve industrial safety and reliability. In recent years, intelligent fault diagnosis method represented by deep learning (DL) has been receiving increasing attention. In order to ameliorate the full training of the deep network, improve the model accuracy, and perfect the analysis of mechanical vibration signals with huge amount of information, a multi-scale attention mechanism residual network (MSA-ResNet) fault diagnosis method is proposed in this paper. First, an attention mechanism block is introduced to construct a new type of residual block combination. Second, a multi-scale structure is constructed by choosing an appropriate convolution kernel size. Finally, the overall framework of MSA-ResNet is constructed for efficient training and failure pattern recognition. The MSA-ResNet algorithm introduces an attention mechanism in each residual module of the residual network (ResNet), which improves the sensitivity to features. The features of different scales are obtained through the multi-scale convolution kernel, and the multi-scale feature extraction of complex nonlinear mechanical vibration signals is realized. The processing of original vibration signal rarely involves artificial interference, which is more conducive to industrial application of the proposed method. Diagnostic experiments are conducted on bearing datasets from the Case Western Reserve University (CWRU) and the Machinery Failure Prevention Technology (MFPT) to verify the effectiveness of the proposed method. The results illustrating the rolling bearing fault diagnosis method based on MSA-ResNet have advantages in multi-scale feature extraction, noise immunity, and fault classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zjq4302发布了新的文献求助10
1秒前
李爱国应助BLUU采纳,获得10
2秒前
SciGPT应助小郭子采纳,获得10
2秒前
木木发布了新的文献求助10
2秒前
简简单单完成签到,获得积分10
2秒前
3秒前
打打应助冷酷的格尔曼采纳,获得10
3秒前
3秒前
4秒前
5秒前
萌酱发布了新的文献求助10
6秒前
拼尽全力发布了新的文献求助10
7秒前
朱凌霄发布了新的文献求助20
7秒前
meng发布了新的文献求助10
8秒前
汉堡包应助pipi采纳,获得10
8秒前
rain发布了新的文献求助30
8秒前
英姑应助wang1343259150采纳,获得50
8秒前
9秒前
复杂完成签到 ,获得积分10
10秒前
Guoshibo发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
李爱国应助lishuai采纳,获得10
12秒前
axt发布了新的文献求助10
13秒前
SciGPT应助lily采纳,获得10
13秒前
番茄酱完成签到,获得积分10
13秒前
13秒前
怕黑的冰安完成签到,获得积分10
14秒前
zzy发布了新的文献求助30
15秒前
共享精神应助milan001采纳,获得10
15秒前
赘婿应助萌酱采纳,获得10
15秒前
我是老大应助蓝色的梦采纳,获得10
15秒前
二毛发布了新的文献求助10
16秒前
yanyifan发布了新的文献求助10
16秒前
16秒前
申小萌发布了新的文献求助30
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298