清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Two-step deep learning approach for pavement crack damage detection and segmentation

分割 计算机科学 人工智能 深度学习 像素 推论 模式识别(心理学)
作者
Yongqing Jiang,Dandan Pang,Chengdong Li,Yulong Yu,Yukang Cao
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (2) 被引量:16
标识
DOI:10.1080/10298436.2022.2065488
摘要

Crack is a common disease of pavement, which will lead to more serious problems if it is not found and maintained in time. This means that it is very important to accurately extract and measure the damage information of pavement cracks. Compared with the traditional methods, the automatic detection and segmentation of pavement cracks using visual elements are more effective which has become a focused area. Although extensive researches has used deep learning methods in pavement crack detection, these methods only involve the single task of detection or segmentation, and few research optimises and combines them. In addition, the accuracy and inference speed of pavement crack detection and segmentation algorithm is also worthy of further research. To solve these limitations, this research proposes a new method of two-stage pavement crack detection and segmentation based on deep learning. The proposed method combines pavement crack detection and segmentation. In the first stage, the optimised YOLOv4 is used as the pavement crack damage detection algorithm to detect pavement cracks under various complex backgrounds. In the second stage, the cracks detected in the first stage are segmented, the detection accuracy is specific to the damage pixels. To further optimise the performance of the detection and segmentation algorithm, a new deeplabv3+ pavement crack segmentation method based on the Ghost module and CBAM attention mechanism is proposed. Compared with the original network, the proposed two-stage pavement damage detection and segmentation method improve the detection accuracy by 2.23% and 7.47%, respectively. The network inference speed is improved by 35.3% and 50.3%, respectively. Compared with the existing single-stage pavement damage detection or segmentation methods, the proposed method has the advantages of fast inference speed and high detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得20
4秒前
twk发布了新的文献求助30
5秒前
科研通AI5应助twk采纳,获得10
13秒前
方白秋完成签到,获得积分10
1分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
1分钟前
流氓恐龙完成签到,获得积分10
1分钟前
wangsai0532完成签到,获得积分10
2分钟前
elisa828完成签到,获得积分10
3分钟前
ffff完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
BOB发布了新的文献求助10
4分钟前
我刷的烧饼贼亮完成签到 ,获得积分10
4分钟前
widesky777完成签到 ,获得积分0
4分钟前
BOB完成签到 ,获得积分10
4分钟前
知行者完成签到 ,获得积分10
5分钟前
昵称完成签到 ,获得积分10
5分钟前
5分钟前
kingcoffee完成签到 ,获得积分10
5分钟前
科研通AI5应助大方的从寒采纳,获得10
5分钟前
5分钟前
hqh发布了新的文献求助30
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
田様应助hqh采纳,获得30
6分钟前
6分钟前
小蘑菇应助akal采纳,获得10
6分钟前
盐植物完成签到,获得积分10
6分钟前
乐观的星月完成签到 ,获得积分10
6分钟前
秋风飒完成签到,获得积分10
7分钟前
7分钟前
冰凌心恋发布了新的文献求助30
7分钟前
Dave完成签到 ,获得积分10
8分钟前
9分钟前
xingsixs完成签到 ,获得积分10
9分钟前
10分钟前
土豆你个西红柿完成签到 ,获得积分10
11分钟前
斯文的难破完成签到 ,获得积分10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080128
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652302
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096