Two-step deep learning approach for pavement crack damage detection and segmentation

分割 计算机科学 人工智能 深度学习 像素 推论 模式识别(心理学)
作者
Yongqing Jiang,Dandan Pang,Chengdong Li,Yulong Yu,Yukang Cao
出处
期刊:International Journal of Pavement Engineering [Informa]
卷期号:24 (2) 被引量:16
标识
DOI:10.1080/10298436.2022.2065488
摘要

Crack is a common disease of pavement, which will lead to more serious problems if it is not found and maintained in time. This means that it is very important to accurately extract and measure the damage information of pavement cracks. Compared with the traditional methods, the automatic detection and segmentation of pavement cracks using visual elements are more effective which has become a focused area. Although extensive researches has used deep learning methods in pavement crack detection, these methods only involve the single task of detection or segmentation, and few research optimises and combines them. In addition, the accuracy and inference speed of pavement crack detection and segmentation algorithm is also worthy of further research. To solve these limitations, this research proposes a new method of two-stage pavement crack detection and segmentation based on deep learning. The proposed method combines pavement crack detection and segmentation. In the first stage, the optimised YOLOv4 is used as the pavement crack damage detection algorithm to detect pavement cracks under various complex backgrounds. In the second stage, the cracks detected in the first stage are segmented, the detection accuracy is specific to the damage pixels. To further optimise the performance of the detection and segmentation algorithm, a new deeplabv3+ pavement crack segmentation method based on the Ghost module and CBAM attention mechanism is proposed. Compared with the original network, the proposed two-stage pavement damage detection and segmentation method improve the detection accuracy by 2.23% and 7.47%, respectively. The network inference speed is improved by 35.3% and 50.3%, respectively. Compared with the existing single-stage pavement damage detection or segmentation methods, the proposed method has the advantages of fast inference speed and high detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slby完成签到 ,获得积分10
刚刚
刚刚
Jasper应助hanzhangjian采纳,获得10
刚刚
顾瞻完成签到,获得积分10
1秒前
大尾巴白完成签到,获得积分10
1秒前
科研八戒发布了新的文献求助10
1秒前
1秒前
523完成签到,获得积分10
1秒前
小冯完成签到,获得积分10
2秒前
来了来了完成签到,获得积分10
3秒前
默默柚子完成签到,获得积分10
4秒前
dora332211完成签到,获得积分10
4秒前
huohuo发布了新的文献求助10
4秒前
setfgrew完成签到,获得积分20
4秒前
笑点低的小天鹅完成签到 ,获得积分10
5秒前
lanyangyang完成签到,获得积分10
5秒前
bb完成签到,获得积分10
5秒前
5秒前
wddyz完成签到,获得积分20
5秒前
5秒前
璟晔完成签到,获得积分10
6秒前
清酒少年游完成签到,获得积分10
6秒前
6秒前
qingli完成签到,获得积分10
6秒前
大鹏完成签到,获得积分10
7秒前
7秒前
7秒前
给我一个小橘子完成签到,获得积分10
8秒前
李健应助默默柚子采纳,获得10
8秒前
大眼睛的草莓完成签到,获得积分10
9秒前
Capital完成签到,获得积分10
11秒前
larry完成签到,获得积分20
11秒前
阳光和煦轻风拂面完成签到 ,获得积分10
11秒前
向日葵完成签到 ,获得积分10
11秒前
羊羊发布了新的文献求助10
12秒前
12秒前
Stting完成签到 ,获得积分10
12秒前
暗能量发布了新的文献求助10
12秒前
ayan发布了新的文献求助10
13秒前
好好好完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510987
求助须知:如何正确求助?哪些是违规求助? 3093692
关于积分的说明 9218660
捐赠科研通 2788179
什么是DOI,文献DOI怎么找? 1530009
邀请新用户注册赠送积分活动 710726
科研通“疑难数据库(出版商)”最低求助积分说明 706329