Clinically useful prediction of hospital admissions in an older population

医学 逻辑回归 置信区间 接收机工作特性 医疗保健 急诊医学 预测建模 医院护理 住院 人口 内科学 机器学习 环境卫生 计算机科学 经济 经济增长
作者
Jan Marcusson,Magnus Nord,Huan-Ji Dong,Johan Lyth
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.2.18154/v4
摘要

Abstract Background: The healthcare for older adults is insufficient in many countries, not designed to meet their needs and is often described as disorganized and reactive. Prediction of older persons at risk of admission to hospital may be one important way for the future healthcare system to act proactively when meeting increasing needs for care. Therefore, we wanted to develop and test a clinically useful model for predicting hospital admissions of older persons based on routine healthcare data. Methods : We used the healthcare data on 40,728 persons, 75-109 years of age to predict hospital in-ward care in a prospective cohort. Multivariable logistic regression was used to identify significant factors predictive of unplanned hospital admission. Model fitting was accomplished using forward selection. The accuracy of the prediction model was expressed as area under the receiver operating characteristic (ROC) curve, AUC. Results: The prediction model consisting of 38 variables exhibited a good discriminative accuracy for unplanned hospital admissions over the following 12 months (AUC 0·69 [95% confidence interval, CI 0·68–0·70]) and was validated on external datasets. Clinically relevant proportions of predicted cases of 40 or 45% resulted in sensitivities of 62 and 66%, respectively. The corresponding positive predicted values (PPV) was 31% and 29%, respectively. Conclusion : A prediction model based on routine administrative healthcare data from older persons can be used to find patients at risk of admission to hospital. Identifying the risk population can enable proactive intervention for older patients with as-yet unknown needs for healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助人员应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
不要预印本_注意着点完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
一自文又欠完成签到 ,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
萧萧应助科研通管家采纳,获得10
1秒前
chenm0333042完成签到,获得积分10
2秒前
稚生w发布了新的文献求助10
3秒前
3秒前
标致过客2025完成签到,获得积分10
4秒前
sen123完成签到,获得积分10
4秒前
5秒前
李先生完成签到 ,获得积分10
6秒前
穆一手完成签到 ,获得积分10
6秒前
Barium完成签到,获得积分10
7秒前
标致的冷梅完成签到,获得积分10
7秒前
脑洞疼应助一个小胖子采纳,获得10
8秒前
RenHP完成签到,获得积分10
8秒前
wendydqw完成签到 ,获得积分10
8秒前
任性的初蝶完成签到,获得积分10
8秒前
9秒前
halona完成签到,获得积分10
9秒前
kmmu0611完成签到 ,获得积分10
10秒前
leclerc完成签到,获得积分10
10秒前
诸葛平卉完成签到 ,获得积分10
11秒前
xgrr发布了新的文献求助10
12秒前
12秒前
LW完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
tym完成签到,获得积分10
13秒前
武科大完成签到,获得积分10
14秒前
郑大小神龙完成签到,获得积分10
14秒前
15秒前
研友_Z1eDgZ完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131