Clinically useful prediction of hospital admissions in an older population

医学 逻辑回归 置信区间 接收机工作特性 医疗保健 急诊医学 预测建模 医院护理 住院 人口 内科学 机器学习 环境卫生 计算机科学 经济 经济增长
作者
Jan Marcusson,Magnus Nord,Huan-Ji Dong,Johan Lyth
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.2.18154/v4
摘要

Abstract Background: The healthcare for older adults is insufficient in many countries, not designed to meet their needs and is often described as disorganized and reactive. Prediction of older persons at risk of admission to hospital may be one important way for the future healthcare system to act proactively when meeting increasing needs for care. Therefore, we wanted to develop and test a clinically useful model for predicting hospital admissions of older persons based on routine healthcare data. Methods : We used the healthcare data on 40,728 persons, 75-109 years of age to predict hospital in-ward care in a prospective cohort. Multivariable logistic regression was used to identify significant factors predictive of unplanned hospital admission. Model fitting was accomplished using forward selection. The accuracy of the prediction model was expressed as area under the receiver operating characteristic (ROC) curve, AUC. Results: The prediction model consisting of 38 variables exhibited a good discriminative accuracy for unplanned hospital admissions over the following 12 months (AUC 0·69 [95% confidence interval, CI 0·68–0·70]) and was validated on external datasets. Clinically relevant proportions of predicted cases of 40 or 45% resulted in sensitivities of 62 and 66%, respectively. The corresponding positive predicted values (PPV) was 31% and 29%, respectively. Conclusion : A prediction model based on routine administrative healthcare data from older persons can be used to find patients at risk of admission to hospital. Identifying the risk population can enable proactive intervention for older patients with as-yet unknown needs for healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老肥完成签到,获得积分10
刚刚
乐乐应助Ada采纳,获得10
1秒前
1秒前
简单绯发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
桐桐应助聪慧紫蓝采纳,获得10
2秒前
tang应助zz采纳,获得10
2秒前
悦耳难摧发布了新的文献求助10
3秒前
nuo发布了新的文献求助20
3秒前
lilili完成签到,获得积分10
3秒前
快快快快快快快快快完成签到 ,获得积分10
4秒前
zky关闭了zky文献求助
4秒前
amazeman111发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Christina发布了新的文献求助30
5秒前
5秒前
lilili发布了新的文献求助10
6秒前
6秒前
xingxing发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
www发布了新的文献求助10
7秒前
香蕉觅云应助激昂的幻梦采纳,获得10
7秒前
7秒前
willen完成签到,获得积分10
8秒前
大个应助小皮艇采纳,获得10
8秒前
晒晒发布了新的文献求助10
8秒前
活着完成签到 ,获得积分10
9秒前
9秒前
李健的小迷弟应助帅玉玉采纳,获得10
9秒前
xxh完成签到,获得积分10
9秒前
10秒前
10秒前
平常丝发布了新的文献求助10
10秒前
vz7发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095