Clinically useful prediction of hospital admissions in an older population

医学 逻辑回归 置信区间 接收机工作特性 医疗保健 急诊医学 预测建模 医院护理 住院 人口 内科学 机器学习 环境卫生 计算机科学 经济 经济增长
作者
Jan Marcusson,Magnus Nord,Huan-Ji Dong,Johan Lyth
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.2.18154/v4
摘要

Abstract Background: The healthcare for older adults is insufficient in many countries, not designed to meet their needs and is often described as disorganized and reactive. Prediction of older persons at risk of admission to hospital may be one important way for the future healthcare system to act proactively when meeting increasing needs for care. Therefore, we wanted to develop and test a clinically useful model for predicting hospital admissions of older persons based on routine healthcare data. Methods : We used the healthcare data on 40,728 persons, 75-109 years of age to predict hospital in-ward care in a prospective cohort. Multivariable logistic regression was used to identify significant factors predictive of unplanned hospital admission. Model fitting was accomplished using forward selection. The accuracy of the prediction model was expressed as area under the receiver operating characteristic (ROC) curve, AUC. Results: The prediction model consisting of 38 variables exhibited a good discriminative accuracy for unplanned hospital admissions over the following 12 months (AUC 0·69 [95% confidence interval, CI 0·68–0·70]) and was validated on external datasets. Clinically relevant proportions of predicted cases of 40 or 45% resulted in sensitivities of 62 and 66%, respectively. The corresponding positive predicted values (PPV) was 31% and 29%, respectively. Conclusion : A prediction model based on routine administrative healthcare data from older persons can be used to find patients at risk of admission to hospital. Identifying the risk population can enable proactive intervention for older patients with as-yet unknown needs for healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Verritis发布了新的文献求助10
2秒前
秋风烈马完成签到,获得积分20
3秒前
3秒前
一叶扁舟0147完成签到,获得积分10
3秒前
年轻晟睿发布了新的文献求助10
4秒前
4秒前
莫言发布了新的文献求助10
4秒前
认真的柏柳完成签到 ,获得积分10
4秒前
5秒前
xieyan发布了新的文献求助10
6秒前
7秒前
AN发布了新的文献求助10
7秒前
酷炫灵安发布了新的文献求助10
7秒前
专注乐巧完成签到,获得积分20
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
sss完成签到,获得积分10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Ian_Zhang应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Ian_Zhang应助科研通管家采纳,获得30
8秒前
8秒前
9秒前
一颗苹果完成签到 ,获得积分10
9秒前
9秒前
慈祥的博发布了新的文献求助10
10秒前
雨天完成签到,获得积分10
10秒前
莫言完成签到,获得积分10
12秒前
大个应助张晓采纳,获得10
12秒前
糖炒李子发布了新的文献求助10
12秒前
爱吃板栗的松鼠完成签到 ,获得积分10
12秒前
orixero应助鲸鱼采纳,获得10
13秒前
13秒前
脑洞疼应助个性诗蕊采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431074
求助须知:如何正确求助?哪些是违规求助? 4544193
关于积分的说明 14191176
捐赠科研通 4462733
什么是DOI,文献DOI怎么找? 2446624
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414596