Diatomic Molecules According to the Wave Mechanics I: Electronic Levels of the Hydrogen Molecular Ion

物理 波函数 能量(信号处理) 氢原子 量子数 原子物理学 数学物理 量子力学 组合数学 数学 群(周期表)
作者
Philip Μ. Morse,E. C. G. Stueckelberg
出处
期刊:Physical Review [American Institute of Physics]
卷期号:33 (6): 932-947 被引量:127
标识
DOI:10.1103/physrev.33.932
摘要

The electronic energies ${W}_{\ensuremath{\rho}}({n}_{y}, {n}_{\ensuremath{\varphi}}, {n}_{x})$ of the hydrogen molecular ion are calculated by means of the wave mechanics as functions of the nuclear separation $c=2\ensuremath{\rho}$, for several values of the quantum numbers ${n}_{y}$, ${n}_{\ensuremath{\varphi}}$ and ${n}_{x}$. The wave function is separable in the elliptical coordinates $y=\frac{({r}_{1}+{r}_{2})}{2\ensuremath{\rho}}$, $\ensuremath{\varphi}$ and $x=\frac{({r}_{1}\ensuremath{-}{r}_{2})}{2\ensuremath{\rho}}$. A qualitative idea of the behavior of these energies as $\ensuremath{\rho}$ changes from infinity to zero is gotten by an investigation of the behavior of the nodal surfaces. The number of these surfaces in any coordinate equals the quantum number in that coordinate. When $\ensuremath{\rho}=\ensuremath{\infty}$ the resulting system is that of a hydrogen atom and a separated nucleus, the nodes are paraboloids and planes with quantum numbers ${n}_{\ensuremath{\eta}}$, ${n}_{\ensuremath{\varphi}}$ and ${n}_{\ensuremath{\xi}}$, and the electronic energy is ${W}_{\ensuremath{\infty}}=\frac{R}{{({n}_{\ensuremath{\eta}}+{n}_{\ensuremath{\varphi}}+n\ensuremath{\xi}+1)}^{2}}$ where $R$ is the lowest energy of the hydrogen atom. When $\ensuremath{\rho}=0$ the system is that of a helium ion, the nodes are spherically symmetric with quantum numbers ${n}_{r}$, ${n}_{\ensuremath{\varphi}}$ and ${n}_{\ensuremath{\theta}}$, and the electronic energy is ${W}_{0}=\frac{4R}{{({n}_{r}+{n}_{\ensuremath{\varphi}}+{n}_{\ensuremath{\theta}}+1)}^{2}}$. As $\ensuremath{\rho}$ changes from zero to infinity it is shown that the quantum numbers are related in the manner ${n}_{r}\ensuremath{\rightarrow}{n}_{y}\ensuremath{\rightarrow}{n}_{\ensuremath{\eta}}$; ${n}_{\ensuremath{\varphi}}\ensuremath{\rightarrow}{n}_{\ensuremath{\varphi}}\ensuremath{\rightarrow}{n}_{\ensuremath{\varphi}}$; ${n}_{\ensuremath{\theta}}\ensuremath{\rightarrow}{n}_{x}\ensuremath{\rightarrow}2{n}_{\ensuremath{\xi}}$ or $2{n}_{\ensuremath{\xi}}+1$. Therefore ${W}_{0}=\frac{4R}{{{n}_{\ensuremath{\eta}}+{n}_{\ensuremath{\varphi}}+2{n}_{\ensuremath{\xi}}+1)}^{2}} or =\frac{4R}{{({n}_{\ensuremath{\eta}}+{n}_{\ensuremath{\varphi}}+2{n}_{\ensuremath{\xi}}+2)}^{2}}$. By this rule it is possible to check the following quantitative calculations. The first order perturbations of the various electronic energies of the first three degenerate levels of the helium ion resulting when $\ensuremath{\rho}=0$ were calculated; the perturbation being the slight separation of the nuclei ($\ensuremath{\rho}>0$). The first order perturbations of the various electronic energies of the first two degenerate levels of the hydrogen atom resulting when $\ensuremath{\rho}=\ensuremath{\infty}$ were calculated when the perturbation was the diminution of the separation ($\ensuremath{\rho}<\ensuremath{\infty}$). The first method is not valid for $\ensuremath{\rho}>\frac{a}{2}$, where $a$ is the radius of the first Bohr orbit of the hydrogen atom, and the second is not valid for $\ensuremath{\rho}<\frac{3a}{2}$. The gap between was extrapolated by means of the nodal reasoning above. These electronic energies plus the energy of nuclear repulsion give the molecular potential energies. A calculation of these shows that of the eight curves obtained only three, the $1s\ensuremath{\sigma}$, $3d\ensuremath{\sigma}$ and $4f\ensuremath{\sigma}$ states show minima, and therefore are stable configurations to this order of approximation (the Hund molecular notation is used for the states). The numerical results check with previous calculations and with the data available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐落音发布了新的文献求助10
刚刚
DT完成签到 ,获得积分10
刚刚
Whisper完成签到 ,获得积分10
1秒前
Nat发布了新的文献求助10
1秒前
兴奋的凝丝完成签到,获得积分10
1秒前
2秒前
三桥aq完成签到,获得积分10
2秒前
2秒前
正义的萨尼铁塔完成签到 ,获得积分10
2秒前
3秒前
3秒前
Owen应助橘涂采纳,获得10
3秒前
16发布了新的文献求助10
4秒前
4秒前
夏天应助ark861023采纳,获得10
4秒前
木木完成签到 ,获得积分10
4秒前
4秒前
lulumomo完成签到 ,获得积分10
5秒前
5秒前
共享精神应助Dean采纳,获得10
5秒前
lllll完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
莫迟完成签到,获得积分10
7秒前
于于发布了新的文献求助10
7秒前
椒盐丸子完成签到,获得积分10
7秒前
wsh关闭了wsh文献求助
7秒前
爆米花应助wangruize采纳,获得10
7秒前
7秒前
Mu丶tou完成签到,获得积分10
8秒前
8秒前
研友_LOqqmZ完成签到 ,获得积分10
8秒前
dm发布了新的文献求助10
8秒前
炒米粉发布了新的文献求助10
8秒前
DueDue0327发布了新的文献求助10
9秒前
10秒前
xss发布了新的文献求助10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
APA handbook of personality and social psychology, Volume 2: Group processes 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3656597
求助须知:如何正确求助?哪些是违规求助? 3219115
关于积分的说明 9728526
捐赠科研通 2927801
什么是DOI,文献DOI怎么找? 1603344
邀请新用户注册赠送积分活动 756235
科研通“疑难数据库(出版商)”最低求助积分说明 733857