环氧树脂
材料科学
纳米复合材料
高折射率聚合物
分散性
复合材料
折射率
纳米颗粒
溶剂
化学工程
高分子化学
纳米技术
化学
图层(电子)
有机化学
光电子学
工程类
作者
Peng Tao,Ying Li,Richard W. Siegel,Linda S. Schadler
摘要
ABSTRACT In this study, we report a facile ex situ approach to preparing transparent dispensible high‐refractive index ZrO 2 /epoxy nanocomposites for LED encapsulation. Highly crystalline, near monodisperse ZrO 2 nanoparticles (NPs) were synthesized by a nonaqueous approach using benzyl alcohol as the coordinating solvent. The synthesized particles were then modified by (3‐glycidyloxypropyl)trimethoxysilane (GMS) ligand. It was found that, with tiny amount of surface‐treating ligand, the modified ZrO 2 NPs were able to be easily dispersed in a commercial epoxy matrix because of the epoxy compatible surface chemistry design as well as the small matrix molecular weight favoring mixing. Transparent thick (1 mm) ZrO 2 /epoxy nanocomposites with a particle core content as high as 50 wt % and an optical transparency of 90% in the visible light range were successfully prepared. The refractive index of the prepared composites increased from 1.51 for neat epoxy to 1.65 for 50 wt % (20 vol %) ZrO 2 loading and maintained the same high‐Abbe number as the neat epoxy matrix. Compared with the neat epoxy encapsulant, an increase of 13.2% in light output power of red LEDs was achieved with the 50 wt % ZrO 2 /epoxy nanocomposite as the novel encapsulant material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3785–3793, 2013
科研通智能强力驱动
Strongly Powered by AbleSci AI