Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets

平滑的 估计员 自回归模型 协方差 算法 卡尔曼滤波器 数学 克里金 计算 计算机科学 协方差函数 空间分析 数学优化 统计
作者
Matthias Katzfuß,Noel Cressie
出处
期刊:Journal of Time Series Analysis [Wiley]
卷期号:32 (4): 430-446 被引量:141
标识
DOI:10.1111/j.1467-9892.2011.00732.x
摘要

The use of satellite measurements in climate studies promises many new scientific insights if those data can be efficiently exploited. Due to sparseness of daily data sets, there is a need to fill spatial gaps and to borrow strength from adjacent days. Nonetheless, these satellites are typically capable of conducting on the order of 100,000 retrievals per day, which makes it impossible to apply traditional spatio‐temporal statistical methods, even in supercomputing environments. To overcome these challenges, we make use of a spatio‐temporal mixed‐effects model. For each massive daily data set, dimension reduction is achieved by essentially modelling the underlying process as a linear combination of spatial basis functions on the globe. The application of a dynamical autoregressive model in time, over the reduced space, allows rapid sequential computation of optimal smoothing predictions via the Kalman smoother; this is known as Fixed Rank Smoothing (FRS). The dimension‐reduced mixed‐effects model contains a number of unknown parameters, including covariance and propagator matrices, which describe the spatial and temporal dependence structure in the reduced‐dimensional process. We take an empirical‐Bayes approach to inference, which involves estimating the parameters and substituting them into the optimal predictors. Method‐of‐moments (MM) parameter estimation (currently used in FRS) is typically inefficient compared to maximum likelihood (ML) estimation and can result in large sampling variability. Here, we develop ML estimation via an expectation‐maximization (EM) algorithm, which offers stable computation of valid estimators and makes efficient use of spatial and temporal dependence in the data. The two parameter‐estimation approaches, MM and ML, are compared in a simulation study. We also apply our methodology to global satellite CO 2 measurements: We optimally smooth the sparse daily CO 2 maps obtained by the Atmospheric InfraRed Sounder (AIRS) instrument on the Aqua satellite; then, using FRS with EM‐estimated parameters, a complete sequence of the daily global CO 2 fields can be obtained, together with their associated prediction uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
ccc应助科研通管家采纳,获得10
1秒前
asdxsweef应助科研通管家采纳,获得10
1秒前
Li_华完成签到,获得积分10
1秒前
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
张益萌应助科研通管家采纳,获得20
1秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
思源应助柏林采纳,获得10
2秒前
3秒前
田様应助suda采纳,获得10
3秒前
蛰人疯完成签到,获得积分10
4秒前
zho发布了新的文献求助20
4秒前
manmanbuman完成签到,获得积分20
5秒前
z3Q应助lilac采纳,获得10
6秒前
酷波er应助小贾同学采纳,获得10
6秒前
春锅锅发布了新的文献求助10
6秒前
6秒前
漂亮的千雁完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
8秒前
沉静黎云发布了新的文献求助10
9秒前
9秒前
10秒前
清爽老九发布了新的文献求助30
10秒前
wudi19887发布了新的文献求助10
11秒前
包子完成签到,获得积分10
12秒前
12秒前
安于心完成签到 ,获得积分10
12秒前
秉文完成签到,获得积分10
13秒前
chen完成签到,获得积分10
13秒前
毛毛弟完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883