Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets

平滑的 估计员 自回归模型 协方差 算法 卡尔曼滤波器 数学 克里金 计算 计算机科学 协方差函数 空间分析 数学优化 统计
作者
Matthias Katzfuß,Noel Cressie
出处
期刊:Journal of Time Series Analysis [Wiley]
卷期号:32 (4): 430-446 被引量:141
标识
DOI:10.1111/j.1467-9892.2011.00732.x
摘要

The use of satellite measurements in climate studies promises many new scientific insights if those data can be efficiently exploited. Due to sparseness of daily data sets, there is a need to fill spatial gaps and to borrow strength from adjacent days. Nonetheless, these satellites are typically capable of conducting on the order of 100,000 retrievals per day, which makes it impossible to apply traditional spatio‐temporal statistical methods, even in supercomputing environments. To overcome these challenges, we make use of a spatio‐temporal mixed‐effects model. For each massive daily data set, dimension reduction is achieved by essentially modelling the underlying process as a linear combination of spatial basis functions on the globe. The application of a dynamical autoregressive model in time, over the reduced space, allows rapid sequential computation of optimal smoothing predictions via the Kalman smoother; this is known as Fixed Rank Smoothing (FRS). The dimension‐reduced mixed‐effects model contains a number of unknown parameters, including covariance and propagator matrices, which describe the spatial and temporal dependence structure in the reduced‐dimensional process. We take an empirical‐Bayes approach to inference, which involves estimating the parameters and substituting them into the optimal predictors. Method‐of‐moments (MM) parameter estimation (currently used in FRS) is typically inefficient compared to maximum likelihood (ML) estimation and can result in large sampling variability. Here, we develop ML estimation via an expectation‐maximization (EM) algorithm, which offers stable computation of valid estimators and makes efficient use of spatial and temporal dependence in the data. The two parameter‐estimation approaches, MM and ML, are compared in a simulation study. We also apply our methodology to global satellite CO 2 measurements: We optimally smooth the sparse daily CO 2 maps obtained by the Atmospheric InfraRed Sounder (AIRS) instrument on the Aqua satellite; then, using FRS with EM‐estimated parameters, a complete sequence of the daily global CO 2 fields can be obtained, together with their associated prediction uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈雯完成签到 ,获得积分10
2秒前
lina完成签到,获得积分10
2秒前
华仔应助小王子采纳,获得10
3秒前
结实大象发布了新的文献求助10
3秒前
ting发布了新的文献求助10
4秒前
Anoxia发布了新的文献求助10
4秒前
xn201120应助佳佳采纳,获得100
5秒前
5秒前
5秒前
画仲人完成签到 ,获得积分10
6秒前
SHAO应助第八维采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
ED应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
SHAO应助jacs111采纳,获得10
8秒前
田様应助科研通管家采纳,获得30
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
KDC完成签到,获得积分10
9秒前
zzzj完成签到 ,获得积分10
9秒前
求求你了完成签到,获得积分10
9秒前
9秒前
阿雷发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099