Size-Induced Enhancement of Carrier Density, LSPR Quality Factor, and Carrier Mobility in Cr–Sn Doped In2O3 Nanocrystals

材料科学 掺杂剂 纳米晶 兴奋剂 表面等离子共振 离子 氧化物 纳米技术 分析化学(期刊) 光电子学 纳米颗粒 化学 冶金 有机化学
作者
Bharat Tandon,Anur Yadav,Deepak Khurana,P. Venkateswara Reddy,Pralay K. Santra,Angshuman Nag
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:29 (21): 9360-9368 被引量:42
标识
DOI:10.1021/acs.chemmater.7b03351
摘要

Heterovalent dopant ions, such as Sn4+, in In2O3 nanocrystals (NCs) provide free electrons for localized surface plasmon resonance (LSPR). But the same heterovalent dopants act as electron scattering centers, both independently and by forming complexes with interstitial oxygen, thereby increasing LSPR line width. Also, such complexes decrease free carrier density. These detrimental effects diminish the figure-of-merit of LSPR known as the quality factor (Q-factor). Herein, we designed colloidal Cr–Sn codoped In2O3 NCs, where both high carrier density and low carrier scattering can be achieved simultaneously, yielding a high LSPR Q-factor of 7.2, which is a record high number compared to prior reports of doped In2O3 NCs. Q-factors increase systematically from 3.2 for 6.6% Sn doped In2O3 NCs to 7.2 for 23.8% Cr–6.6% Sn codoped In2O3 NCs by increasing the Cr codoping concentration, which is also accompanied by an increase in NC size from 6.7 to 22.1 nm. Detailed characterization and analysis of LSPR spectra using Drude model suggest that the increase in NC size (induced by Cr codoping) is mainly responsible for the enhanced LSPR Q-factor. Sn4+ dopants on the surface of NCs are more vulnerable to form irreducible complexes with interstitial oxide ions, compared to Sn4+ ions in the core. Therefore, an increase in the concentration ratio of [Sncore]/[Snsurface] (or [Sn]/[interstitial oxide]) by increasing the size of NCs, increases the carrier density. Furthermore, such increase in both NC size and Cr doping influences multiple factors reducing the scattering of charge carriers, thereby increasing the optical carrier mobility. This unique combination, which increases both the density and mobility of charge carriers, improves the LSPR Q-factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助今今采纳,获得10
1秒前
CodeCraft应助秋之月采纳,获得10
1秒前
I1waml完成签到 ,获得积分10
1秒前
1秒前
guygun完成签到,获得积分10
1秒前
zho发布了新的文献求助10
2秒前
独特亦旋发布了新的文献求助10
2秒前
3秒前
研友_LOqqmZ完成签到,获得积分10
4秒前
4秒前
英俊的铭应助文献查找采纳,获得10
4秒前
solobang发布了新的文献求助10
4秒前
Jasper应助老迟到的书雁采纳,获得10
7秒前
orixero应助小二采纳,获得10
7秒前
8秒前
8秒前
simple完成签到,获得积分10
8秒前
caoyy发布了新的文献求助10
8秒前
赵小可可可可完成签到,获得积分10
10秒前
小萌发布了新的文献求助10
11秒前
weiv发布了新的文献求助10
11秒前
海科科发布了新的文献求助10
12秒前
陌上花完成签到,获得积分10
12秒前
我是站长才怪应助微笑襄采纳,获得10
13秒前
caoyy完成签到,获得积分10
14秒前
JamesPei应助独特亦旋采纳,获得10
15秒前
16秒前
16秒前
科目三应助Jenny采纳,获得50
18秒前
gry发布了新的文献求助10
19秒前
Hh发布了新的文献求助10
21秒前
Jzhang应助daniel采纳,获得10
21秒前
21秒前
夏夏发布了新的文献求助10
21秒前
jiesenya完成签到,获得积分10
23秒前
今后应助smile采纳,获得10
23秒前
万能图书馆应助wuzhizhiya采纳,获得10
24秒前
科研通AI5应助清新的静枫采纳,获得10
24秒前
applelpypies完成签到 ,获得积分10
24秒前
内向一笑完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824