Electrochemical CO2 reduction (ECR) to value-added fuels and chemicals provides a “clean” and efficient way to mitigate energy shortages and to lower the global carbon footprint. The unique structures of two-dimensional (2D) nanosheets and their tunable electronic properties make these nanostructured materials intriguing in catalysis. Various 2D nanosheets are showing promise for CO2 reduction, depending on the preferred reaction product (HCOOH, CO, CH4, CH3OH, or CH3COOH). In this review, we focus on recent progress that has been achieved in using these 2D materials for ECR. We highlight procedures available for tuning catalytic activities of 2D materials and describe the fundamentals and future challenges of CO2 catalysis by 2D nanosheets.