化学
化学计量学
图表
元素分析
生态化学计量学
有机化学
磷
数学
统计
作者
Albert Rivas‐Ubach,Yina Liu,Thomas S. Bianchi,Nikola Tolić,Christer Jansson,Ljiljana Paša‐Tolić
标识
DOI:10.1021/acs.analchem.8b00529
摘要
van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI