已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms

化学 化学计量学 图表 元素分析 生态化学计量学 分类 环境化学 生物系统 有机化学 人工智能 数学 计算机科学 统计 生物
作者
Albert Rivas‐Ubach,Yina Liu,Thomas S. Bianchi,Nikola Tolić,Christer Jansson,Ljiljana Paša‐Tolić
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (10): 6152-6160 被引量:207
标识
DOI:10.1021/acs.analchem.8b00529
摘要

van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉凉有点热完成签到,获得积分10
刚刚
刚刚
糖果铺子完成签到 ,获得积分10
刚刚
顺心人达发布了新的文献求助10
2秒前
NexusExplorer应助zzzdx采纳,获得10
4秒前
5秒前
Youth发布了新的文献求助10
5秒前
cfv发布了新的文献求助10
6秒前
yier发布了新的文献求助10
6秒前
7秒前
9秒前
StandardR完成签到,获得积分10
11秒前
13秒前
16秒前
首席医官完成签到,获得积分10
17秒前
倪倪发布了新的文献求助10
18秒前
哈哈哈哈完成签到,获得积分10
18秒前
普里兹盐完成签到,获得积分10
18秒前
21秒前
希捷方向发布了新的文献求助10
22秒前
顾矜应助cfv采纳,获得10
22秒前
打打应助1111111111111采纳,获得10
26秒前
26秒前
27秒前
27秒前
27秒前
27秒前
xhz843完成签到 ,获得积分10
30秒前
爹爹发布了新的文献求助10
31秒前
31秒前
32秒前
32秒前
32秒前
11111发布了新的文献求助10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770