Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms

化学 化学计量学 图表 元素分析 生态化学计量学 有机化学 数学 统计
作者
Albert Rivas‐Ubach,Yina Liu,Thomas S. Bianchi,Nikola Tolić,Christer Jansson,Ljiljana Paša‐Tolić
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (10): 6152-6160 被引量:157
标识
DOI:10.1021/acs.analchem.8b00529
摘要

van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
招财不肥发布了新的文献求助10
刚刚
Hello应助1111采纳,获得10
1秒前
lwei完成签到,获得积分20
1秒前
白蕲发布了新的文献求助10
1秒前
cindy发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
笑笑完成签到,获得积分10
3秒前
4秒前
默默的芙完成签到,获得积分10
4秒前
xm发布了新的文献求助10
4秒前
4秒前
5秒前
陈佳琪完成签到,获得积分10
5秒前
LU完成签到,获得积分10
5秒前
5秒前
5秒前
lwei发布了新的文献求助10
5秒前
设计狂魔应助九川采纳,获得30
5秒前
LiShin发布了新的文献求助10
6秒前
song完成签到,获得积分10
7秒前
Phoebe1996发布了新的文献求助10
7秒前
yannis2020发布了新的文献求助10
7秒前
小猴发布了新的文献求助10
8秒前
酷酷的老太完成签到 ,获得积分20
8秒前
8秒前
锣大炮完成签到,获得积分10
9秒前
maqin完成签到,获得积分10
9秒前
小王完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助lwei采纳,获得10
9秒前
幽默的念双完成签到,获得积分10
9秒前
正直冰露发布了新的文献求助10
10秒前
标致小伙发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762