高尿酸血症
尿酸氧化酶
内分泌学
尿酸
内科学
尿囊素
基因剔除小鼠
糖尿病
生物
医学
化学
生物化学
受体
作者
Jie Lü,Xu Hou,Xuan Yuan,Lingling Cui,Zhen Liu,Xinde Li,Lidan Ma,Xiaoyu Cheng,Ying Xin,Can Wang,Keke Zhang,Xuefeng Wang,Wei Ren,Ruixia Sun,Zhaotong Jia,Zibin Tian,Qing‐Sheng Mi,Changgui Li
标识
DOI:10.1016/j.kint.2017.04.031
摘要
The urate oxidase (Uox) gene encodes uricase that in the rodent liver degrades uric acid into allantoin, forming an obstacle for establishing stable mouse models of hyperuricemia. The loss of uricase in humans during primate evolution causes their vulnerability to hyperuricemia. Thus, we generated a Uox-knockout mouse model on a pure C57BL/6J background using the transcription activator-like effector nuclease (TALEN) technique. These Uox-knockout mice spontaneously developed hyperuricemia (over 420 μmol/l) with about 40% survival up to 62 weeks. Renal dysfunction (elevated serum creatinine and blood urea nitrogen) and glomerular/tubular lesions were observed in these Uox-knockout mice. Male Uox-knockout mice developed glycol-metabolic disorders associated with compromised insulin secretion and elevated vulnerability to streptozotocin-induced diabetes, whereas female mice developed hypertension accompanied by aberrant lipo-metabolism. Urate-lowering drugs reduced serum uric acid and improved hyperuricemia-induced disorders. Thus, uricase knockout provides a suitable mouse model to investigate hyperuricemia and associated disorders mimicking the human condition, suggesting that hyperuricemia has a causal role in the development of metabolic disorders and hypertension.
科研通智能强力驱动
Strongly Powered by AbleSci AI