材料科学
双功能
阴极
电池(电)
化学工程
碳纤维
电化学
氮气
多孔性
掺杂剂
纳米技术
电极
催化作用
光电子学
兴奋剂
复合材料
有机化学
化学
复合数
功率(物理)
物理
物理化学
量子力学
工程类
作者
Meijia Yang,Xuanhe Hu,Zhengsong Fang,Lu Sun,Zhongke Yuan,Shuangyin Wang,Wei Hong,Xudong Chen,Dingshan Yu
标识
DOI:10.1002/adfm.201701971
摘要
Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm 3 g −1 ), ultralarge surface area (2546 m 2 g −1 ), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh g Zn −1 at an unprecedentedly high rate of 120 mA cm −2 , with an ultrahigh power density of 197 mW cm −2 . When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g −1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI