Electrochemical Behavior and Analysis of Organic Additives in Sub 14nm Copper Damascene Plating Baths

铜互连 电化学 恒电位仪 材料科学 电镀(地质) 电解质 镀铜 冶金 硫酸 无机化学 化学工程 化学 电极 电镀 纳米技术 地质学 物理化学 工程类 图层(电子) 地球物理学
作者
Michael Pavlov,Danni Lin,Eugene Shalyt,Isaak Tsimberg
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (16): 929-929 被引量:1
标识
DOI:10.1149/ma2017-02/16/929
摘要

With miniaturization of semiconductor devices, the size of electroplated features is continuously reduced in the damascene process. Most recently, copper electroplating technology application has been extended in 14 nm, 10 nm, and 7 nm nodes. This advancement has caused significant changes in bath compositions. While new organic additive packages were introduced, the inorganic component concentrations were significantly altered as well. The composition of plating baths used in sub 14 nm nodes was recently described [1, 2]. These publications specified relatively low concentrations of copper between 1 and 10 grams per liter, sulfuric acid between 2 and 15 grams per liter, and 30-150 ppm chloride ions. Such electrolyte also includes organic additives traditionally used in copper electroplating baths (Suppressor, Accelerator, and Leveler). Suppressors are polymeric in nature (e.g. polyethylene glycol, polypropylene glycol, etc.). Accelerators are typically sulfur-containing compounds such as dimercaptopropane sulfonic acid, and bis-(3-sulfopropyl) disulfide (SPS). Levelers are designed to work on protruding features, and typically nitrogen contained compounds, e.g. Janus Green B. Before a new analytical electrochemical method is developed, the interactions between bath components at low copper concentrations should be investigated and understood. For this purpose, we utilized an electrochemical cell with three electrodes connected to a potentiostat/galvanostat. We studied responses of organic components at different electrochemical and hydrodynamic conditions as well as at different concentrations of copper. Fig. 1 shows electrochemical responses of organic additives in solutions with different copper concentrations. All tests were performed with the working platinum electrode set at a constant cathodic current of -10 mA and 10-2500 RPM. As this graph indicates, the copper concentration plays a key role in the electrodeposition process. Reduction in copper concentration causes significant changes of plating potential, which is consistent with observations made in another publication [2]. Injection of Suppressor (PEG) into the solution changes plating overpotential in a similar way to reduction of copper concentration. It is critical to note that addition of Suppressor into solutions with different copper concentration causes almost the same shift in plating potential (Fig. 2). In Fig. 2, the voltages for 1 g/l and 5 g/l copper solutions were adjusted to match the initial potential for a solution with 10 g/l of copper. Unlike the Suppressor effect, Accelerator (SPS) and Leveler (JGB) effects are clearly dependant on the changes in the copper conentrations. Accelerator component transient response shows slower and weaker depolarizatrion at the lowest concentration of copper, while the Leveler polarization effect is stronger at lower copper concentration. Understanding the interactions between bath components at low copper concentrations enables the design of accurate electrochemical methods of analysis for each organic component. This presentation will reveal more information related to the electrochemical behavior of organic additives and inorganic components. Results of EIS investigations will also be represented. The presentation will be concluded with a discussion of analytical results for each organic additive at different concentration levels. References: J. Zhou, J. Reid, “Low copper electroplating solutions for fill and defect control”, US Patent Application, US 13/753,33 J. Zhou, E. Opocensky, J. Reid, “Low Cu electrolyte for advanced damascene plating”, Semiconductor Technology International Conference (CSTIC), 2015 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Baywreath完成签到,获得积分10
1秒前
竹筏过海应助Lei采纳,获得30
1秒前
马皓发布了新的文献求助10
1秒前
2秒前
田字格发布了新的文献求助10
3秒前
北极星发布了新的文献求助10
4秒前
5秒前
南原给南原的求助进行了留言
5秒前
6秒前
Wenjian7761完成签到,获得积分10
6秒前
缪缪发布了新的文献求助10
8秒前
老实的石头完成签到,获得积分10
8秒前
小吴同学发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
腼腆的若雁完成签到,获得积分10
12秒前
12秒前
fuiee发布了新的文献求助10
12秒前
小开心完成签到,获得积分10
12秒前
北极星完成签到,获得积分10
13秒前
cccc完成签到 ,获得积分10
13秒前
14秒前
Dogged完成签到 ,获得积分10
15秒前
耶啵耶啵完成签到 ,获得积分10
16秒前
mentality完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
VDC应助机智寻雪采纳,获得30
17秒前
17秒前
jack_kunn发布了新的文献求助30
18秒前
19秒前
19秒前
田様应助linkman采纳,获得10
19秒前
zik完成签到 ,获得积分10
20秒前
汉堡包应助纷飞漫天寂寥采纳,获得10
20秒前
开心完成签到 ,获得积分10
21秒前
shuyi发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714