Electrochemical Behavior and Analysis of Organic Additives in Sub 14nm Copper Damascene Plating Baths

铜互连 电化学 恒电位仪 材料科学 电镀(地质) 电解质 镀铜 冶金 硫酸 无机化学 化学工程 化学 电极 电镀 纳米技术 地质学 物理化学 工程类 图层(电子) 地球物理学
作者
Michael Pavlov,Danni Lin,Eugene Shalyt,Isaak Tsimberg
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (16): 929-929 被引量:1
标识
DOI:10.1149/ma2017-02/16/929
摘要

With miniaturization of semiconductor devices, the size of electroplated features is continuously reduced in the damascene process. Most recently, copper electroplating technology application has been extended in 14 nm, 10 nm, and 7 nm nodes. This advancement has caused significant changes in bath compositions. While new organic additive packages were introduced, the inorganic component concentrations were significantly altered as well. The composition of plating baths used in sub 14 nm nodes was recently described [1, 2]. These publications specified relatively low concentrations of copper between 1 and 10 grams per liter, sulfuric acid between 2 and 15 grams per liter, and 30-150 ppm chloride ions. Such electrolyte also includes organic additives traditionally used in copper electroplating baths (Suppressor, Accelerator, and Leveler). Suppressors are polymeric in nature (e.g. polyethylene glycol, polypropylene glycol, etc.). Accelerators are typically sulfur-containing compounds such as dimercaptopropane sulfonic acid, and bis-(3-sulfopropyl) disulfide (SPS). Levelers are designed to work on protruding features, and typically nitrogen contained compounds, e.g. Janus Green B. Before a new analytical electrochemical method is developed, the interactions between bath components at low copper concentrations should be investigated and understood. For this purpose, we utilized an electrochemical cell with three electrodes connected to a potentiostat/galvanostat. We studied responses of organic components at different electrochemical and hydrodynamic conditions as well as at different concentrations of copper. Fig. 1 shows electrochemical responses of organic additives in solutions with different copper concentrations. All tests were performed with the working platinum electrode set at a constant cathodic current of -10 mA and 10-2500 RPM. As this graph indicates, the copper concentration plays a key role in the electrodeposition process. Reduction in copper concentration causes significant changes of plating potential, which is consistent with observations made in another publication [2]. Injection of Suppressor (PEG) into the solution changes plating overpotential in a similar way to reduction of copper concentration. It is critical to note that addition of Suppressor into solutions with different copper concentration causes almost the same shift in plating potential (Fig. 2). In Fig. 2, the voltages for 1 g/l and 5 g/l copper solutions were adjusted to match the initial potential for a solution with 10 g/l of copper. Unlike the Suppressor effect, Accelerator (SPS) and Leveler (JGB) effects are clearly dependant on the changes in the copper conentrations. Accelerator component transient response shows slower and weaker depolarizatrion at the lowest concentration of copper, while the Leveler polarization effect is stronger at lower copper concentration. Understanding the interactions between bath components at low copper concentrations enables the design of accurate electrochemical methods of analysis for each organic component. This presentation will reveal more information related to the electrochemical behavior of organic additives and inorganic components. Results of EIS investigations will also be represented. The presentation will be concluded with a discussion of analytical results for each organic additive at different concentration levels. References: J. Zhou, J. Reid, “Low copper electroplating solutions for fill and defect control”, US Patent Application, US 13/753,33 J. Zhou, E. Opocensky, J. Reid, “Low Cu electrolyte for advanced damascene plating”, Semiconductor Technology International Conference (CSTIC), 2015 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WangJL完成签到 ,获得积分10
1秒前
梨懵懵完成签到,获得积分10
2秒前
zjzjzjzjzj完成签到 ,获得积分10
2秒前
TUTU完成签到 ,获得积分10
3秒前
清脆的秋寒完成签到,获得积分10
3秒前
KJ完成签到,获得积分10
4秒前
xue完成签到 ,获得积分10
4秒前
风信子deon01完成签到,获得积分10
8秒前
Yuki完成签到 ,获得积分10
8秒前
10秒前
小蘑菇应助量子星尘采纳,获得150
10秒前
kaikai晴完成签到,获得积分10
11秒前
关中人完成签到,获得积分10
11秒前
Owen应助量子星尘采纳,获得10
12秒前
英姑应助量子星尘采纳,获得10
14秒前
FashionBoy应助量子星尘采纳,获得10
15秒前
16秒前
Brave发布了新的文献求助10
16秒前
YJ完成签到,获得积分10
16秒前
赘婿应助量子星尘采纳,获得10
16秒前
16秒前
酷酷小子完成签到 ,获得积分0
17秒前
英姑应助量子星尘采纳,获得10
17秒前
Nicole完成签到 ,获得积分10
18秒前
天选小牛马完成签到 ,获得积分10
18秒前
瘦瘦的铅笔完成签到 ,获得积分10
18秒前
bkagyin应助量子星尘采纳,获得10
19秒前
所所应助量子星尘采纳,获得10
19秒前
赘婿应助量子星尘采纳,获得10
19秒前
丰富的慕卉完成签到,获得积分10
19秒前
在水一方应助量子星尘采纳,获得10
20秒前
奋斗奋斗再奋斗完成签到,获得积分10
22秒前
Hello应助量子星尘采纳,获得10
22秒前
勤恳易真完成签到,获得积分10
22秒前
阳光保温杯完成签到 ,获得积分10
25秒前
852应助量子星尘采纳,获得30
26秒前
小蘑菇应助量子星尘采纳,获得150
27秒前
mengmenglv完成签到 ,获得积分0
27秒前
wanci应助量子星尘采纳,获得10
28秒前
123完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325617
求助须知:如何正确求助?哪些是违规求助? 4465988
关于积分的说明 13895182
捐赠科研通 4358329
什么是DOI,文献DOI怎么找? 2394019
邀请新用户注册赠送积分活动 1387457
关于科研通互助平台的介绍 1358311