Electrochemical Behavior and Analysis of Organic Additives in Sub 14nm Copper Damascene Plating Baths

铜互连 电化学 恒电位仪 材料科学 电镀(地质) 电解质 镀铜 冶金 硫酸 无机化学 化学工程 化学 电极 电镀 纳米技术 地质学 物理化学 工程类 图层(电子) 地球物理学
作者
Michael Pavlov,Danni Lin,Eugene Shalyt,Isaak Tsimberg
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (16): 929-929 被引量:1
标识
DOI:10.1149/ma2017-02/16/929
摘要

With miniaturization of semiconductor devices, the size of electroplated features is continuously reduced in the damascene process. Most recently, copper electroplating technology application has been extended in 14 nm, 10 nm, and 7 nm nodes. This advancement has caused significant changes in bath compositions. While new organic additive packages were introduced, the inorganic component concentrations were significantly altered as well. The composition of plating baths used in sub 14 nm nodes was recently described [1, 2]. These publications specified relatively low concentrations of copper between 1 and 10 grams per liter, sulfuric acid between 2 and 15 grams per liter, and 30-150 ppm chloride ions. Such electrolyte also includes organic additives traditionally used in copper electroplating baths (Suppressor, Accelerator, and Leveler). Suppressors are polymeric in nature (e.g. polyethylene glycol, polypropylene glycol, etc.). Accelerators are typically sulfur-containing compounds such as dimercaptopropane sulfonic acid, and bis-(3-sulfopropyl) disulfide (SPS). Levelers are designed to work on protruding features, and typically nitrogen contained compounds, e.g. Janus Green B. Before a new analytical electrochemical method is developed, the interactions between bath components at low copper concentrations should be investigated and understood. For this purpose, we utilized an electrochemical cell with three electrodes connected to a potentiostat/galvanostat. We studied responses of organic components at different electrochemical and hydrodynamic conditions as well as at different concentrations of copper. Fig. 1 shows electrochemical responses of organic additives in solutions with different copper concentrations. All tests were performed with the working platinum electrode set at a constant cathodic current of -10 mA and 10-2500 RPM. As this graph indicates, the copper concentration plays a key role in the electrodeposition process. Reduction in copper concentration causes significant changes of plating potential, which is consistent with observations made in another publication [2]. Injection of Suppressor (PEG) into the solution changes plating overpotential in a similar way to reduction of copper concentration. It is critical to note that addition of Suppressor into solutions with different copper concentration causes almost the same shift in plating potential (Fig. 2). In Fig. 2, the voltages for 1 g/l and 5 g/l copper solutions were adjusted to match the initial potential for a solution with 10 g/l of copper. Unlike the Suppressor effect, Accelerator (SPS) and Leveler (JGB) effects are clearly dependant on the changes in the copper conentrations. Accelerator component transient response shows slower and weaker depolarizatrion at the lowest concentration of copper, while the Leveler polarization effect is stronger at lower copper concentration. Understanding the interactions between bath components at low copper concentrations enables the design of accurate electrochemical methods of analysis for each organic component. This presentation will reveal more information related to the electrochemical behavior of organic additives and inorganic components. Results of EIS investigations will also be represented. The presentation will be concluded with a discussion of analytical results for each organic additive at different concentration levels. References: J. Zhou, J. Reid, “Low copper electroplating solutions for fill and defect control”, US Patent Application, US 13/753,33 J. Zhou, E. Opocensky, J. Reid, “Low Cu electrolyte for advanced damascene plating”, Semiconductor Technology International Conference (CSTIC), 2015 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武画板完成签到 ,获得积分10
1秒前
mark33442完成签到,获得积分10
2秒前
JUNE发布了新的文献求助30
4秒前
4秒前
有终完成签到 ,获得积分10
6秒前
fishss完成签到,获得积分10
8秒前
胡燕完成签到 ,获得积分10
9秒前
柏忆南完成签到 ,获得积分10
10秒前
Zoe完成签到 ,获得积分20
10秒前
小梦完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
17秒前
虎虎生威完成签到,获得积分10
20秒前
无限晓蓝完成签到 ,获得积分10
22秒前
QQLL完成签到,获得积分10
25秒前
方方完成签到 ,获得积分10
26秒前
马桶盖盖子完成签到 ,获得积分10
28秒前
Zion完成签到,获得积分0
40秒前
调皮从筠发布了新的文献求助20
42秒前
木木杉完成签到 ,获得积分10
45秒前
方俊驰发布了新的文献求助10
46秒前
friend516完成签到 ,获得积分10
47秒前
50秒前
充电宝应助tian采纳,获得10
52秒前
六等于三二一完成签到 ,获得积分0
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
牵绊完成签到 ,获得积分10
1分钟前
junmahmu完成签到,获得积分10
1分钟前
tian发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SSDlk完成签到,获得积分10
1分钟前
嘒彼小星完成签到 ,获得积分10
1分钟前
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
Iolite完成签到,获得积分10
1分钟前
美丽的依琴完成签到,获得积分10
1分钟前
香蕉觅云应助tian采纳,获得10
1分钟前
落叶捎来讯息完成签到 ,获得积分10
1分钟前
骤世界完成签到 ,获得积分10
1分钟前
6昂完成签到 ,获得积分10
1分钟前
gao完成签到 ,获得积分0
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015