神经再支配
去神经支配
医学
解剖
电机端板
神经肌肉接头
心肌细胞
肌电图
内科学
生物
神经科学
物理医学与康复
作者
Liancai Mu,Jingming Chen,Jing Li,Themba Nyirenda,Mary Fowkes,Stanislaw Sobotka
标识
DOI:10.1055/s-0038-1627463
摘要
Background We have demonstrated that the native motor zone (NMZ) within a muscle is an ideal target for performing nerve-muscle-endplate band grafting (NMEG) to restore motor function of a denervated muscle. This study was designed to determine spatiotemporal alterations of the myofibers, motor endplates (MEPs), and axons in the NMZ of long-term denervated muscles for exploring if NMEG-NMZ technique would have the potential for delayed reinnervation. Methods Sternomastoid (SM) muscles of adult female Sprague-Dawley rats (n = 21) were experimentally denervated and denervation-induced changes in muscle weight, myofiber size, MEPs, and intramuscular nerve axons were evaluated histomorphometrically and immunohistochemically at the end of 3, 6, and 9 months after denervation. The values obtained from the ipsilateral normal side served as control. Results The denervated SM muscles exhibited a progressive reduction in muscle weight (38%, 31%, and 19% of the control) and fiber diameter (52%, 40%, and 28% of the control) for 3-, 6-, and 9-month denervation, respectively. The denervated MEPs were still detectable even 9 months after denervation. The mean number of the denervated MEPs was 79%, 65%, and 43% of the control in the 3-, 6-, and 9-month denervated SM, respectively. Degenerated axons in the denervated muscles became fragmented. Conclusions Persistence of MEPs in the long-term denervated SM suggests that some surgeries targeting the MEPs such as NMEG-NMZ technique should be effective for delayed reinnervation. However, more work is needed to develop strategies for preservation of muscle mass and MEPs after denervation.
科研通智能强力驱动
Strongly Powered by AbleSci AI