Integrated strategy for identifying minor components in complex samples combining mass defect, diagnostic ions and neutral loss information based on ultra-performance liquid chromatography-high resolution mass spectrometry platform: Folium Artemisiae Argyi as a case study

化学 质谱法 色谱法 笛卡尔叶 高效液相色谱法 高分辨率 分辨率(逻辑) 萃取(化学) 人工智能 计算机科学 遥感 地质学
作者
Dabing Ren,Ran Lu,Chong Yang,Meilin Xu,Yi Liu
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1550: 35-44 被引量:52
标识
DOI:10.1016/j.chroma.2018.03.044
摘要

Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) has been used as a powerful tool to profile chemicals in traditional Chinese medicines. However, identification of potentially bioactive compounds is still a challenging work because of the large amount of information contained in the raw UPLC-HRMS data. Especially the ubiquitous matrix interference makes it more difficult to characterize the minor components. Therefore, rapid recognition and efficient extraction of the corresponding parent ions is critically important for identifying the attractive compounds in complex samples. Herein, we propose an integrated filtering strategy to remove un-related or interference MS1 ions from the raw UPLC-HRMS data, which helps to retain the MS features of the target components and expose the compounds of interest as effective as possible. The proposed strategy is based on the use of a combination of different filtering methods, including nitrogen rule, mass defect, and neutral loss/diagnostic fragment ions filtering. The strategy was validated by rapid screening and identification of 16 methoxylated flavonoids and 55 chlorogenic acids analogues from the raw UPLC-HRMS dataset of Folium Artemisiae Argyi. Particularly, successful detection of several minor components indicated that the integrated strategy has obvious advantages over individual filtering methods, and it can be used as a promising method for screening and identifying compounds from complex samples, such as herbal medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tanghong完成签到,获得积分10
1秒前
泉水完成签到 ,获得积分10
2秒前
2秒前
2秒前
飞飞完成签到,获得积分10
2秒前
小黄完成签到 ,获得积分10
2秒前
胖哥发布了新的文献求助10
2秒前
中午饭完成签到,获得积分10
2秒前
满增明发布了新的文献求助10
3秒前
Painkiller_完成签到,获得积分10
3秒前
共享精神应助蜡笔小新采纳,获得10
3秒前
s1kl发布了新的文献求助10
3秒前
迷你的雁枫完成签到 ,获得积分10
3秒前
科研通AI2S应助key采纳,获得10
3秒前
jbear发布了新的文献求助10
4秒前
xiaofeiyang1122完成签到,获得积分10
4秒前
4秒前
5秒前
咕噜咕噜发布了新的文献求助10
5秒前
zhengyuci完成签到 ,获得积分10
5秒前
zz完成签到,获得积分10
5秒前
俏皮白云完成签到 ,获得积分10
5秒前
凯七完成签到 ,获得积分10
6秒前
02完成签到,获得积分10
6秒前
薛人英完成签到,获得积分10
6秒前
青岛彭于晏完成签到 ,获得积分10
6秒前
纳斯达克完成签到,获得积分10
7秒前
Nancy完成签到 ,获得积分10
7秒前
7秒前
7秒前
wpz发布了新的文献求助10
8秒前
s1kl完成签到,获得积分10
8秒前
标致的方盒完成签到,获得积分10
8秒前
9秒前
wd发布了新的文献求助10
10秒前
科研通AI2S应助小绵羊采纳,获得10
10秒前
猷鲛完成签到,获得积分10
10秒前
wqq完成签到 ,获得积分10
11秒前
11秒前
绵马紫萁完成签到,获得积分10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257286
求助须知:如何正确求助?哪些是违规求助? 2899187
关于积分的说明 8304261
捐赠科研通 2568471
什么是DOI,文献DOI怎么找? 1395131
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630691