(TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening

材料科学 微观结构 高熵合金 固溶体 固溶强化 合金 延展性(地球科学) 材料的强化机理 冶金 难熔金属 热力学 复合材料 蠕动 物理
作者
Shaoping Wang,Jie Xu
出处
期刊:Intermetallics [Elsevier]
卷期号:95: 59-72 被引量:122
标识
DOI:10.1016/j.intermet.2018.01.017
摘要

In this work, the evolution of microstructure and fundamental mechanical properties with Mo concentration in the arc-melted (TiZrNbTa)100-xMox (0 ≤ x ≤ 20) high-entropy alloys (HEAs) are investigated. The arc-melted (TiZrNbTa)100-xMox alloys structurally consist of two bcc phases. The change in volume fractions of two phases in the microstructure is insignificant with Mo concentration, at levels of ∼75% for bcc1 and ∼25% for bcc2. The increases in microhardness and Young's modulus of the alloys linearly scale with Mo concentration. To compromise the strength and ductility, the (TiZrNbTa)90Mo10 exhibits an optimal combination of stiffness (E = 137 GPa), compressive yield strength (σy = 1370 MPa) and deformability (εp ≈ 25%). In addition, it is indicated that dislocation widths in bcc lattice of refractory HEAs are insensitive to the alloying complexity, reflecting that the Peierls barrier is excluded as a predominant factor of strengthening. Furthermore, a simple model is proposed to reveal the solid solution hardening (SSH) in bcc refractory HEAs, in which the solid solutions are treated as an imposition of distortion-free and distorted lattices. By applying this model to archived refractory HEAs, the predicted yield strength agrees well with experimentally measured values. It provides a simple empirical tool used for predicting the strength of bcc refractory HEAs and to assist new alloy design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助melodyezi采纳,获得10
1秒前
蓝色条纹衫完成签到 ,获得积分10
1秒前
2秒前
2秒前
kingwhitewing发布了新的文献求助10
2秒前
灵巧汉堡完成签到 ,获得积分10
3秒前
SciGPT应助幸福胡萝卜采纳,获得10
4秒前
积极晓兰完成签到,获得积分10
4秒前
4秒前
离子电池完成签到,获得积分10
4秒前
小熊饼干完成签到,获得积分10
4秒前
Ryuichi完成签到 ,获得积分10
5秒前
冷静的平安完成签到,获得积分20
5秒前
周士乐完成签到,获得积分10
5秒前
juan完成签到,获得积分10
6秒前
cheeselemon182完成签到,获得积分10
6秒前
英勇凝旋完成签到,获得积分10
7秒前
HopeStar发布了新的文献求助10
7秒前
7秒前
石幻枫完成签到 ,获得积分10
8秒前
生动盼秋发布了新的文献求助10
8秒前
韭黄发布了新的文献求助10
8秒前
Eliauk完成签到,获得积分10
9秒前
小野狼完成签到,获得积分10
9秒前
威武诺言完成签到,获得积分10
9秒前
fengye发布了新的文献求助10
9秒前
李东东完成签到 ,获得积分10
9秒前
Zn应助hulin_zjxu采纳,获得10
9秒前
海鸥海鸥发布了新的文献求助50
10秒前
小乔要努力变强完成签到,获得积分10
10秒前
YANG完成签到 ,获得积分10
10秒前
10秒前
在水一方应助马保国123采纳,获得10
10秒前
Jovid完成签到,获得积分10
11秒前
建成完成签到,获得积分10
11秒前
爆米花应助落落采纳,获得10
11秒前
852应助liu123479采纳,获得20
12秒前
12秒前
无情念之发布了新的文献求助10
12秒前
lilac应助Rocky采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759