Near-Infrared Fusion via Color Regularization for Haze and Color Distortion Removals

薄雾 人工智能 计算机视觉 彩色图像 亮度 失真(音乐) 能见度 红外线的 计算机科学 图像融合 色彩平衡 图像处理 图像(数学) 光学 物理 放大器 带宽(计算) 气象学 计算机网络
作者
Chang‐Hwan Son,Xiao–Ping Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 3111-3126 被引量:53
标识
DOI:10.1109/tcsvt.2017.2748150
摘要

Different from conventional haze removal methods based on a single image, near-infrared imaging can provide two types of multimodal images: one is the near-infrared image and the other is the visible color image. These two images have different characteristics regarding color and visibility. The captured near-infrared image is haze-free, but it is grayscale, whereas the visible color image has colors, but it contains haze. There are serious discrepancies in terms of brightness and image structures between the near-infrared image and the visible color image. Due to this discrepancy, the direct use of the near-infrared image for haze removal causes a color distortion problem during near-infrared fusion. The key objective for the near-infrared fusion is therefore to remove the color distortion as well as the haze. To achieve this objective, this paper presents a new near-infrared fusion model that combines the proposed new color and depth regularizations with the conventional haze degradation model. The proposed color regularization sets the color range of the unknown haze-free image based on the combination of the two colors of the colorized near-infrared image and the captured visible color image. That is, the proposed color regularization can provide color information for the unknown haze-free color image. The new depth regularization enables the consecutively estimated depth maps not to be largely deviated, thereby transferring natural-looking colors and high visibility of the colorized near-infrared image into the preliminary dehazed version of the captured visible color image with color distortion and edge artifacts. Experimental results show that the proposed color and depth regularizations can help remove the color distortion and the haze simultaneously. The effectiveness of the proposed color regularization for the near-infrared fusion is verified by comparing it with other conventional regularizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白雍发布了新的文献求助10
刚刚
XiangXu完成签到,获得积分10
1秒前
guajiguaji发布了新的文献求助10
1秒前
1秒前
CipherSage应助liuq采纳,获得10
1秒前
优美的冰巧完成签到 ,获得积分10
2秒前
3秒前
3秒前
汤圆发布了新的文献求助50
3秒前
TT发布了新的文献求助10
4秒前
舒适的天奇完成签到 ,获得积分10
4秒前
YOLO完成签到 ,获得积分10
5秒前
刘奶奶的牛奶完成签到,获得积分10
6秒前
lio发布了新的文献求助10
8秒前
9秒前
9秒前
凝子老师发布了新的文献求助10
10秒前
白瓜完成签到 ,获得积分10
10秒前
123完成签到,获得积分10
12秒前
12秒前
斯文钢笔完成签到 ,获得积分10
13秒前
Hh发布了新的文献求助10
14秒前
司马天寿发布了新的文献求助10
15秒前
上官若男应助lio采纳,获得10
15秒前
wsnice应助呼呼采纳,获得20
17秒前
科研通AI5应助善良的路灯采纳,获得10
17秒前
19秒前
司马天寿完成签到,获得积分20
21秒前
21秒前
汤圆完成签到,获得积分10
22秒前
bitahu发布了新的文献求助10
22秒前
希望天下0贩的0应助lixm采纳,获得10
22秒前
科研通AI2S应助敦敦采纳,获得10
23秒前
24秒前
_呱_应助楼台杏花琴弦采纳,获得50
25秒前
咸鱼一号发布了新的文献求助10
25秒前
正经俠发布了新的文献求助10
25秒前
李志远完成签到,获得积分10
26秒前
ghh发布了新的文献求助10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849