Near-Infrared Fusion via Color Regularization for Haze and Color Distortion Removals

薄雾 人工智能 计算机视觉 彩色图像 亮度 失真(音乐) 能见度 红外线的 计算机科学 图像融合 色彩平衡 图像处理 图像(数学) 光学 物理 放大器 带宽(计算) 气象学 计算机网络
作者
Chang‐Hwan Son,Xiao–Ping Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 3111-3126 被引量:53
标识
DOI:10.1109/tcsvt.2017.2748150
摘要

Different from conventional haze removal methods based on a single image, near-infrared imaging can provide two types of multimodal images: one is the near-infrared image and the other is the visible color image. These two images have different characteristics regarding color and visibility. The captured near-infrared image is haze-free, but it is grayscale, whereas the visible color image has colors, but it contains haze. There are serious discrepancies in terms of brightness and image structures between the near-infrared image and the visible color image. Due to this discrepancy, the direct use of the near-infrared image for haze removal causes a color distortion problem during near-infrared fusion. The key objective for the near-infrared fusion is therefore to remove the color distortion as well as the haze. To achieve this objective, this paper presents a new near-infrared fusion model that combines the proposed new color and depth regularizations with the conventional haze degradation model. The proposed color regularization sets the color range of the unknown haze-free image based on the combination of the two colors of the colorized near-infrared image and the captured visible color image. That is, the proposed color regularization can provide color information for the unknown haze-free color image. The new depth regularization enables the consecutively estimated depth maps not to be largely deviated, thereby transferring natural-looking colors and high visibility of the colorized near-infrared image into the preliminary dehazed version of the captured visible color image with color distortion and edge artifacts. Experimental results show that the proposed color and depth regularizations can help remove the color distortion and the haze simultaneously. The effectiveness of the proposed color regularization for the near-infrared fusion is verified by comparing it with other conventional regularizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小黑爱搞科研完成签到,获得积分10
1秒前
上官若男应助芋泥奶酪采纳,获得10
1秒前
2秒前
研友_8op0RL发布了新的文献求助10
3秒前
张瑜发布了新的文献求助10
4秒前
xiaoxiao发布了新的文献求助10
5秒前
科研通AI5应助蚂蚁的奋斗采纳,获得10
5秒前
6秒前
shun完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
烟花应助Irene采纳,获得10
8秒前
8秒前
烟火完成签到,获得积分10
8秒前
付品聪发布了新的文献求助10
9秒前
Wayne72完成签到,获得积分0
9秒前
kingmin完成签到,获得积分10
10秒前
10秒前
7890733发布了新的文献求助10
11秒前
lyyy完成签到,获得积分10
11秒前
12秒前
神勇秋白发布了新的文献求助10
12秒前
12秒前
13秒前
白辉完成签到,获得积分10
14秒前
15秒前
思源应助小卡子采纳,获得10
15秒前
TRACEY发布了新的文献求助10
17秒前
18秒前
科研通AI6应助洁净荔枝采纳,获得10
18秒前
19秒前
假寐完成签到 ,获得积分20
20秒前
七七发布了新的文献求助10
20秒前
Cleo应助shun采纳,获得10
20秒前
20秒前
momo完成签到,获得积分10
24秒前
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207630
求助须知:如何正确求助?哪些是违规求助? 4385465
关于积分的说明 13657124
捐赠科研通 4244081
什么是DOI,文献DOI怎么找? 2328604
邀请新用户注册赠送积分活动 1326315
关于科研通互助平台的介绍 1278477