已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Near-Infrared Fusion via Color Regularization for Haze and Color Distortion Removals

薄雾 人工智能 计算机视觉 彩色图像 亮度 失真(音乐) 能见度 红外线的 计算机科学 图像融合 色彩平衡 图像处理 图像(数学) 光学 物理 放大器 带宽(计算) 气象学 计算机网络
作者
Chang‐Hwan Son,Xiao–Ping Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 3111-3126 被引量:53
标识
DOI:10.1109/tcsvt.2017.2748150
摘要

Different from conventional haze removal methods based on a single image, near-infrared imaging can provide two types of multimodal images: one is the near-infrared image and the other is the visible color image. These two images have different characteristics regarding color and visibility. The captured near-infrared image is haze-free, but it is grayscale, whereas the visible color image has colors, but it contains haze. There are serious discrepancies in terms of brightness and image structures between the near-infrared image and the visible color image. Due to this discrepancy, the direct use of the near-infrared image for haze removal causes a color distortion problem during near-infrared fusion. The key objective for the near-infrared fusion is therefore to remove the color distortion as well as the haze. To achieve this objective, this paper presents a new near-infrared fusion model that combines the proposed new color and depth regularizations with the conventional haze degradation model. The proposed color regularization sets the color range of the unknown haze-free image based on the combination of the two colors of the colorized near-infrared image and the captured visible color image. That is, the proposed color regularization can provide color information for the unknown haze-free color image. The new depth regularization enables the consecutively estimated depth maps not to be largely deviated, thereby transferring natural-looking colors and high visibility of the colorized near-infrared image into the preliminary dehazed version of the captured visible color image with color distortion and edge artifacts. Experimental results show that the proposed color and depth regularizations can help remove the color distortion and the haze simultaneously. The effectiveness of the proposed color regularization for the near-infrared fusion is verified by comparing it with other conventional regularizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河完成签到,获得积分10
刚刚
4秒前
JJ发布了新的文献求助10
5秒前
CipherSage应助焕颜采纳,获得10
6秒前
8秒前
8秒前
X悦发布了新的文献求助10
8秒前
9秒前
10秒前
鱼七发布了新的文献求助10
12秒前
小菡菡发布了新的文献求助10
12秒前
Manbo发布了新的文献求助10
15秒前
YanZhe发布了新的文献求助10
17秒前
十三完成签到 ,获得积分10
17秒前
一番完成签到,获得积分10
19秒前
真实的依白应助Surge采纳,获得20
20秒前
CodeCraft应助小菡菡采纳,获得10
21秒前
21秒前
焕颜完成签到,获得积分20
23秒前
白日兰完成签到 ,获得积分10
24秒前
27秒前
斯文败类应助博修采纳,获得10
27秒前
焕颜发布了新的文献求助10
28秒前
充电宝应助科研通管家采纳,获得10
30秒前
柯一一应助科研通管家采纳,获得10
30秒前
柯一一应助科研通管家采纳,获得10
30秒前
30秒前
FIN应助科研通管家采纳,获得10
30秒前
FIN应助科研通管家采纳,获得20
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
柯一一应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
moshi发布了新的文献求助10
31秒前
32秒前
命运发布了新的文献求助20
32秒前
zhilu完成签到,获得积分10
34秒前
35秒前
NexusExplorer应助乐观青亦采纳,获得10
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024