Near-Infrared Fusion via Color Regularization for Haze and Color Distortion Removals

薄雾 人工智能 计算机视觉 彩色图像 亮度 失真(音乐) 能见度 红外线的 计算机科学 图像融合 色彩平衡 图像处理 图像(数学) 光学 物理 放大器 带宽(计算) 气象学 计算机网络
作者
Chang‐Hwan Son,Xiao–Ping Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 3111-3126 被引量:53
标识
DOI:10.1109/tcsvt.2017.2748150
摘要

Different from conventional haze removal methods based on a single image, near-infrared imaging can provide two types of multimodal images: one is the near-infrared image and the other is the visible color image. These two images have different characteristics regarding color and visibility. The captured near-infrared image is haze-free, but it is grayscale, whereas the visible color image has colors, but it contains haze. There are serious discrepancies in terms of brightness and image structures between the near-infrared image and the visible color image. Due to this discrepancy, the direct use of the near-infrared image for haze removal causes a color distortion problem during near-infrared fusion. The key objective for the near-infrared fusion is therefore to remove the color distortion as well as the haze. To achieve this objective, this paper presents a new near-infrared fusion model that combines the proposed new color and depth regularizations with the conventional haze degradation model. The proposed color regularization sets the color range of the unknown haze-free image based on the combination of the two colors of the colorized near-infrared image and the captured visible color image. That is, the proposed color regularization can provide color information for the unknown haze-free color image. The new depth regularization enables the consecutively estimated depth maps not to be largely deviated, thereby transferring natural-looking colors and high visibility of the colorized near-infrared image into the preliminary dehazed version of the captured visible color image with color distortion and edge artifacts. Experimental results show that the proposed color and depth regularizations can help remove the color distortion and the haze simultaneously. The effectiveness of the proposed color regularization for the near-infrared fusion is verified by comparing it with other conventional regularizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助香蕉寒梅采纳,获得10
3秒前
初空月儿发布了新的文献求助10
3秒前
4秒前
Dester发布了新的文献求助60
4秒前
youlinn发布了新的文献求助30
4秒前
酷炫的幻丝完成签到 ,获得积分10
4秒前
5秒前
泽锦臻发布了新的文献求助10
6秒前
Koalas应助优雅麦片采纳,获得20
6秒前
专注乐荷发布了新的文献求助10
6秒前
浮游应助MutantKitten采纳,获得10
8秒前
马马完成签到 ,获得积分10
9秒前
9秒前
布图格其完成签到,获得积分10
10秒前
晴天完成签到 ,获得积分10
10秒前
LLL发布了新的文献求助10
12秒前
13秒前
13秒前
丘比特应助LYYYY采纳,获得10
14秒前
15秒前
感冒药发布了新的文献求助10
19秒前
Hello应助benhzh采纳,获得10
19秒前
19秒前
20秒前
narcol发布了新的文献求助30
20秒前
Lucas应助LLL采纳,获得10
21秒前
边快乐9296完成签到,获得积分10
25秒前
Esther发布了新的文献求助50
25秒前
29秒前
34秒前
36秒前
Dester驳回了Akim应助
36秒前
36秒前
香蕉寒梅发布了新的文献求助10
36秒前
Zzz发布了新的文献求助10
36秒前
pilgrim应助晨曦采纳,获得10
36秒前
han123123发布了新的文献求助10
37秒前
39秒前
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720