Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.