对角线的
维数(图论)
趋同(经济学)
高斯分布
应用数学
基质(化学分析)
数学
接头(建筑物)
对角矩阵
计算机科学
对称矩阵
数学优化
算法
组合数学
特征向量
物理
工程类
量子力学
复合材料
经济
经济增长
建筑工程
材料科学
几何学
标识
DOI:10.1109/camsap.2009.5413271
摘要
We consider a particular form of the classical approximate joint diagonalization problem, often encountered in maximum likelihood source separation based on second-order statistics with Gaussian sources. In this form the number of target-matrices equals their dimension, and the joint diagonality criterion requires that in each transformed (¿diagonalized¿) target-matrix, all off-diagonal elements on one specific row and column be exactly zeros, but does not care about the other (diagonal or off-diagonal) elements. We show that this problem always has a solution for symmetric, positive-definite target-matrices and present some interesting alternative formulations. We review two existing iterative approaches for obtaining the diagonalizing matrices and propose a third one with faster convergence.
科研通智能强力驱动
Strongly Powered by AbleSci AI