ISG15
干扰素
生物
蛋白质组
细胞生物学
干扰素刺激基因
泛素
转染
HEK 293细胞
细胞培养
基因
遗传学
受体
先天免疫系统
作者
Nadia V. Giannakopoulos,Jiann-Kae Luo,Vladimir V. Papov,Weiguo Zou,Deborah J. Lenschow,Barbara Jacobs,Ernest C. Borden,Jun Li,Herbert W. Virgin,Dong‐Er Zhang
标识
DOI:10.1016/j.bbrc.2005.08.132
摘要
Though the interferon-inducible protein ISG15 was one of the first ubiquitin-like modifiers to be discovered, much remains unknown about the identity of proteins conjugated to ISG15 or the biologic consequences of modification. To gain a better understanding of the cellular pathways affected by ISG15, we identified proteins targeted for ISGylation using a proteomic approach. Mass spectrometric analysis identified 76 candidate ISGylation targets in anti-ISG15 immunoprecipitates from interferon-treated mouse or human cells. Twenty-one proteins were found in both mouse and human samples, including STAT1, a known target of ISGylation. Candidates identified in both species were tested for ISGylation in a transfection system: 18 of 19 proteins tested were ISGylated in this system. Two candidates, EF-2 and VCP, were also shown to be ISGylated in an interferon-dependent manner in the absence of exogenous over-expression. Seven proteins identified from a single species, but functionally related to candidates found in both species, were also ISGylated in the over-expression system. Proteins that can be ISGylated play important roles in translation, glycolysis, stress responses, and cell motility. These data indicate that ISGylation targets proteins found in several fundamentally important cellular pathways and will contribute to understanding the physiologic role of interferon-induced ISG15 and ISG15 conjugation.
科研通智能强力驱动
Strongly Powered by AbleSci AI