Enterprise pre-sales forums: A preliminary study of metadata and content

元数据 计算机科学 万维网 内容(测量理论) 数学 数学分析
作者
Vinay Deolalikar
标识
DOI:10.1109/bigdata.2013.6691680
摘要

Asynchronous discussion forums are one of the artifacts of the internet age. They occur in a wide variety of applications from distance learning to technical support. Technical support forums have also proliferated in enterprises, and today form a salient feature of many technical interactions in large enterprises. Two interconnected example applications where such forums may be employed are the following: customer pre-sales, where sales teams attempt to answer queries of potential customers; and internal forums where technical staff attempt to provide assistance to sales teams on urgent issues that require immediate attention. In this paper, we report a study of an internal technical support forum for pre-sales in a large Fortune-10 global enterprise. The data being generated on such forums is fast evolving, requires quick and intelligent human (assisted by machine) responses, and is of high value to the enterprise since it directly affects sales. Owing to this, it poses unique challenges. We conduct a two-fold study of the forum. First, we study the metadata in the forum messages to understand the temporal, participant, and length profiles of messages. Second, we use text mining to detect trends in forums using clustering and information-theoretic techniques. To our knowledge, this is the first study of an enterprise internal technical support forum. As a focal point in our study, we describe the problem of identifying "hot" or "urgent" issues early, so that management can take requisite steps to deal with emerging problems. Our results are surprising: we show that threads that bring urgent issues to light have temporal, length, and content profiles that resemble that of non-urgent threads. Therefore, the detection of such threads via metadata and content analysis is difficult. We present a solution to this problem based on participant profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助fen采纳,获得10
刚刚
1秒前
Yuan88发布了新的文献求助10
1秒前
orixero应助奶油采纳,获得10
1秒前
风中冰香应助thynkz采纳,获得40
2秒前
WSS发布了新的文献求助10
2秒前
琉璃发布了新的文献求助30
2秒前
聪明的珊迪完成签到,获得积分10
3秒前
3秒前
asdffgg814完成签到,获得积分10
4秒前
zero发布了新的文献求助10
5秒前
6秒前
科研通AI6应助LQ采纳,获得10
6秒前
浪费发布了新的文献求助10
6秒前
何大青完成签到,获得积分10
7秒前
7秒前
星辰大海应助韩jl采纳,获得10
9秒前
HuangXintong发布了新的文献求助10
9秒前
9秒前
MozzieMiao完成签到 ,获得积分10
9秒前
科研通AI6应助快乐雅青采纳,获得10
10秒前
TRY发布了新的文献求助10
10秒前
FashionBoy应助afterly采纳,获得10
10秒前
手捣土豆完成签到 ,获得积分10
11秒前
漉lu发布了新的文献求助30
12秒前
执着的海发布了新的文献求助10
12秒前
12秒前
深情的晓露完成签到,获得积分10
13秒前
XYA关注了科研通微信公众号
13秒前
13秒前
薰衣草发布了新的文献求助10
14秒前
14秒前
fen发布了新的文献求助10
15秒前
上官若男应助周周采纳,获得10
16秒前
Akim应助轻松雁蓉采纳,获得10
16秒前
所所应助小宋采纳,获得10
16秒前
不三不四完成签到,获得积分10
17秒前
结实荧荧完成签到,获得积分10
17秒前
L1Young完成签到,获得积分10
17秒前
Paranoid完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609