Enterprise pre-sales forums: A preliminary study of metadata and content

元数据 计算机科学 万维网 内容(测量理论) 数学 数学分析
作者
Vinay Deolalikar
标识
DOI:10.1109/bigdata.2013.6691680
摘要

Asynchronous discussion forums are one of the artifacts of the internet age. They occur in a wide variety of applications from distance learning to technical support. Technical support forums have also proliferated in enterprises, and today form a salient feature of many technical interactions in large enterprises. Two interconnected example applications where such forums may be employed are the following: customer pre-sales, where sales teams attempt to answer queries of potential customers; and internal forums where technical staff attempt to provide assistance to sales teams on urgent issues that require immediate attention. In this paper, we report a study of an internal technical support forum for pre-sales in a large Fortune-10 global enterprise. The data being generated on such forums is fast evolving, requires quick and intelligent human (assisted by machine) responses, and is of high value to the enterprise since it directly affects sales. Owing to this, it poses unique challenges. We conduct a two-fold study of the forum. First, we study the metadata in the forum messages to understand the temporal, participant, and length profiles of messages. Second, we use text mining to detect trends in forums using clustering and information-theoretic techniques. To our knowledge, this is the first study of an enterprise internal technical support forum. As a focal point in our study, we describe the problem of identifying "hot" or "urgent" issues early, so that management can take requisite steps to deal with emerging problems. Our results are surprising: we show that threads that bring urgent issues to light have temporal, length, and content profiles that resemble that of non-urgent threads. Therefore, the detection of such threads via metadata and content analysis is difficult. We present a solution to this problem based on participant profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jixuchance完成签到,获得积分10
1秒前
liriyii发布了新的文献求助10
1秒前
花花发布了新的文献求助10
2秒前
2秒前
阿炳妹妹发布了新的文献求助10
2秒前
3秒前
3秒前
在水一方应助老实幻姬采纳,获得10
3秒前
浮游应助AA采纳,获得10
4秒前
制冷剂发布了新的文献求助10
4秒前
4秒前
郭正霄发布了新的文献求助10
4秒前
4秒前
5秒前
椿萱并茂完成签到 ,获得积分10
5秒前
赵苏程发布了新的文献求助10
5秒前
乐乐应助刘六采纳,获得10
6秒前
大个应助YufanZhang采纳,获得10
6秒前
6秒前
活力曼青完成签到,获得积分10
6秒前
7秒前
这瓜不卖发布了新的文献求助10
7秒前
Orange应助帅气蓝采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Akim应助寒冷黎云采纳,获得10
8秒前
9秒前
健忘远山完成签到 ,获得积分10
9秒前
hanleiharry1发布了新的文献求助10
10秒前
Channing_Ho完成签到 ,获得积分10
10秒前
eric888应助辛勤的诗蕊采纳,获得50
11秒前
11秒前
顺利毕业完成签到,获得积分10
11秒前
12秒前
科研小白完成签到,获得积分10
12秒前
Ava应助甜蜜花采纳,获得10
12秒前
上官若男应助Raza采纳,获得10
12秒前
13秒前
Ava应助眼睛大行云采纳,获得10
13秒前
14秒前
xue完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978