Empirical correlations and CFD simulations of vertical two-phase gas–liquid (Newtonian and non-Newtonian) slug flow compared against experimental data of void fraction

计算流体力学 机械 牛顿流体 流体体积法 非牛顿流体 压力降 两相流 经验模型 材料科学 热力学 流量(数学) 模拟 物理 工程类
作者
Nicolás Ratkovich,Subrata Kumar Majumder,Thomas Ruby Bentzen
出处
期刊:Chemical engineering research & design [Elsevier]
卷期号:91 (6): 988-998 被引量:35
标识
DOI:10.1016/j.cherd.2012.11.002
摘要

Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics (CFD) and comparing this directly with experimental measurements and empirical relationships found in literature. A vertical tube of 3.4 m with an internal diameter of 0.1905 m was used. The two-phase CFD model was implemented in Star CCM+ using the volume of fluid (VOF) model. A relatively good agreement was found between the experimental measurements, the CFD results and the empirical relationships. In terms of void fraction for Newtonian and non-Newtonian liquids, the empirical correlations perform much worse than the CFD simulations, errors of 48 and 25%, respectively, against the experimental data. This shows that CFD can be used to predict void fraction relatively well for comparison against empirical correlations and they can be used for design and scale-up processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分20
刚刚
勤劳火车完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
搜集达人应助农艳宁采纳,获得80
2秒前
2秒前
2秒前
香米发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
英姑应助扣子采纳,获得10
5秒前
5秒前
Corn发布了新的文献求助10
5秒前
5秒前
6秒前
nono完成签到 ,获得积分10
6秒前
农艳宁发布了新的文献求助10
7秒前
8秒前
科研通AI6.1应助开花采纳,获得10
8秒前
linhappy发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
哼哼哒发布了新的文献求助10
9秒前
连lian发布了新的文献求助10
9秒前
11秒前
steelorange发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
JamesPei应助wzzf采纳,获得10
11秒前
12秒前
paul发布了新的文献求助10
13秒前
李健发布了新的文献求助10
13秒前
13秒前
咸鱼好翻身完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
研友_GZbjPZ完成签到,获得积分10
15秒前
collins发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761878
求助须知:如何正确求助?哪些是违规求助? 5532710
关于积分的说明 15401214
捐赠科研通 4898111
什么是DOI,文献DOI怎么找? 2634724
邀请新用户注册赠送积分活动 1582875
关于科研通互助平台的介绍 1538103