Fixed point free involutions and equivariant maps. II

等变映射 数学 固定点 纯数学 组合数学 数学分析
作者
P. E. Conner,E. E. Floyd
出处
期刊:Transactions of the American Mathematical Society [American Mathematical Society]
卷期号:105 (2): 222-228 被引量:29
标识
DOI:10.1090/s0002-9947-1962-0143208-6
摘要

1. Introduction.We shall continue our discussion of fixed point free involutions which was begun in [2].We denote by S" the antipodal involution on the n-sphere.For any fixed point free involution on a space X the co-index was defined to be the least integer n for which there is an equivariant map X -* S".We abbreviate this invariant to co-ind X.In this terminology the classical Borsuk theorem states that co-ind S" = n.There are also numerous results (for references, see [2]) which among other things relate co-index to the homology of the quotient space X/T.The main purpose of the present note is the computation of the coindex in several examples in which homotopy, rather than homology, considerations are of primary importance.It should be mentioned that A. S. Svarc has also recently studied the application of homotopy theory to equivariant maps [5]; there is a considerable overlap between his work and our previous paper [2].We consider as in our previous paper the space P(S") of paths on S" which join a given point x to its antipode A(x) = -x together with the natural involution of P(S").It is shown that co-ind P(S") = n for n ^ 1, 2, 4 or 8. Next we consider the space V(S") of unit tangent vectors to S", with its involution (the antipodal map on each fibre), and show that co-ind V(S") = n for n # 1, 3, or 7 and co-ind V(S") = n -1 for n = 1, 3 or 7. We also compute the co-index of involutions on low dimensional projective spaces.The arguments rely on suspension and Hopf invariant theorems, using particularly the results of J. F. Adams [1] on maps of Hopf invariant one.2. The space of paths P(S").We choose a base point xeS" and we let P(S") denote the space of all paths in S" which join x to its antipode -x.A fixed point free involution on P(S") is given by T(p)(t) = -p(l -t), where p(t) is a point in P(S").In this section we show (2.1) Theorem.For n # 1, 2, 4 or 8, co-ind P(S") = n.We showed this for n > 1 and odd in [2, p. 425] and we conjectured this result as the general case.We see first that co-ind P(S") = n by defining an equivariant map m : P(S") -► S" as m(p(t)) = p(l/2) e S".Now we suppose there is an equivariant map mx : P(S") -> Sn_1.We define an
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qin完成签到 ,获得积分10
刚刚
英勇无春完成签到,获得积分10
刚刚
知性的觅露完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
先锋老刘001完成签到,获得积分10
2秒前
3秒前
韭黄发布了新的文献求助10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
碳烤小肥肠完成签到,获得积分10
3秒前
3秒前
3秒前
摆哥完成签到,获得积分10
3秒前
沈阳医科大学完成签到 ,获得积分10
5秒前
Hongtao完成签到 ,获得积分10
5秒前
三两三完成签到,获得积分10
7秒前
壮观的海豚完成签到 ,获得积分10
7秒前
偏偏海完成签到,获得积分10
8秒前
jin发布了新的文献求助10
8秒前
炕上的西西弗应助韭黄采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
时林完成签到,获得积分10
11秒前
小丸子完成签到 ,获得积分10
12秒前
woodword完成签到,获得积分10
15秒前
16秒前
犹豫若烟应助碧蓝雨安采纳,获得10
17秒前
技术的不能发表完成签到 ,获得积分10
17秒前
17秒前
ytg922完成签到,获得积分0
18秒前
18秒前
白开水完成签到,获得积分10
18秒前
Calvin-funsom完成签到,获得积分10
18秒前
20秒前
三杠完成签到 ,获得积分10
20秒前
rgjipeng完成签到,获得积分0
21秒前
21秒前
Aurora完成签到 ,获得积分10
22秒前
Aneira完成签到 ,获得积分10
23秒前
小知了完成签到,获得积分10
23秒前
123发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597737
求助须知:如何正确求助?哪些是违规求助? 4009200
关于积分的说明 12410079
捐赠科研通 3688475
什么是DOI,文献DOI怎么找? 2033210
邀请新用户注册赠送积分活动 1066477
科研通“疑难数据库(出版商)”最低求助积分说明 951683