清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fixed point free involutions and equivariant maps. II

等变映射 数学 固定点 纯数学 组合数学 数学分析
作者
P. E. Conner,E. E. Floyd
出处
期刊:Transactions of the American Mathematical Society [American Mathematical Society]
卷期号:105 (2): 222-228 被引量:29
标识
DOI:10.1090/s0002-9947-1962-0143208-6
摘要

1. Introduction.We shall continue our discussion of fixed point free involutions which was begun in [2].We denote by S" the antipodal involution on the n-sphere.For any fixed point free involution on a space X the co-index was defined to be the least integer n for which there is an equivariant map X -* S".We abbreviate this invariant to co-ind X.In this terminology the classical Borsuk theorem states that co-ind S" = n.There are also numerous results (for references, see [2]) which among other things relate co-index to the homology of the quotient space X/T.The main purpose of the present note is the computation of the coindex in several examples in which homotopy, rather than homology, considerations are of primary importance.It should be mentioned that A. S. Svarc has also recently studied the application of homotopy theory to equivariant maps [5]; there is a considerable overlap between his work and our previous paper [2].We consider as in our previous paper the space P(S") of paths on S" which join a given point x to its antipode A(x) = -x together with the natural involution of P(S").It is shown that co-ind P(S") = n for n ^ 1, 2, 4 or 8. Next we consider the space V(S") of unit tangent vectors to S", with its involution (the antipodal map on each fibre), and show that co-ind V(S") = n for n # 1, 3, or 7 and co-ind V(S") = n -1 for n = 1, 3 or 7. We also compute the co-index of involutions on low dimensional projective spaces.The arguments rely on suspension and Hopf invariant theorems, using particularly the results of J. F. Adams [1] on maps of Hopf invariant one.2. The space of paths P(S").We choose a base point xeS" and we let P(S") denote the space of all paths in S" which join x to its antipode -x.A fixed point free involution on P(S") is given by T(p)(t) = -p(l -t), where p(t) is a point in P(S").In this section we show (2.1) Theorem.For n # 1, 2, 4 or 8, co-ind P(S") = n.We showed this for n > 1 and odd in [2, p. 425] and we conjectured this result as the general case.We see first that co-ind P(S") = n by defining an equivariant map m : P(S") -► S" as m(p(t)) = p(l/2) e S".Now we suppose there is an equivariant map mx : P(S") -> Sn_1.We define an
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的行云完成签到 ,获得积分0
4秒前
x银河里完成签到 ,获得积分10
8秒前
开拖拉机的医学僧完成签到 ,获得积分10
10秒前
粗心的飞槐完成签到 ,获得积分10
13秒前
亮总完成签到 ,获得积分10
17秒前
little发布了新的文献求助30
25秒前
冰留完成签到 ,获得积分10
30秒前
海鹏完成签到 ,获得积分10
32秒前
35秒前
little完成签到,获得积分20
37秒前
研友_08oa3n完成签到 ,获得积分10
38秒前
IlIIlIlIIIllI应助科研通管家采纳,获得10
43秒前
doreen完成签到 ,获得积分10
46秒前
藤椒辣鱼应助坚强寻双采纳,获得10
56秒前
Eid完成签到,获得积分10
1分钟前
赛韓吧完成签到 ,获得积分10
1分钟前
33发布了新的文献求助100
1分钟前
yinhe完成签到 ,获得积分10
1分钟前
1分钟前
SYX完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
李健应助张华采纳,获得10
1分钟前
诚心的水杯完成签到 ,获得积分10
1分钟前
gu完成签到 ,获得积分10
1分钟前
坚定的海露完成签到,获得积分10
1分钟前
2分钟前
单身的金鱼完成签到 ,获得积分10
2分钟前
2分钟前
苹果惜梦发布了新的文献求助10
2分钟前
田田完成签到 ,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
2分钟前
madison完成签到 ,获得积分10
2分钟前
123完成签到,获得积分10
3分钟前
3分钟前
chichenglin完成签到 ,获得积分10
3分钟前
川藏客完成签到 ,获得积分10
3分钟前
ARIA完成签到 ,获得积分10
3分钟前
忐忑的雪糕完成签到 ,获得积分10
3分钟前
3分钟前
balalalalala发布了新的文献求助10
3分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434823
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944331
捐赠科研通 2720103
什么是DOI,文献DOI怎么找? 1492156
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862