清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fixed point free involutions and equivariant maps. II

等变映射 数学 固定点 纯数学 组合数学 数学分析
作者
P. E. Conner,E. E. Floyd
出处
期刊:Transactions of the American Mathematical Society [American Mathematical Society]
卷期号:105 (2): 222-228 被引量:29
标识
DOI:10.1090/s0002-9947-1962-0143208-6
摘要

1. Introduction.We shall continue our discussion of fixed point free involutions which was begun in [2].We denote by S" the antipodal involution on the n-sphere.For any fixed point free involution on a space X the co-index was defined to be the least integer n for which there is an equivariant map X -* S".We abbreviate this invariant to co-ind X.In this terminology the classical Borsuk theorem states that co-ind S" = n.There are also numerous results (for references, see [2]) which among other things relate co-index to the homology of the quotient space X/T.The main purpose of the present note is the computation of the coindex in several examples in which homotopy, rather than homology, considerations are of primary importance.It should be mentioned that A. S. Svarc has also recently studied the application of homotopy theory to equivariant maps [5]; there is a considerable overlap between his work and our previous paper [2].We consider as in our previous paper the space P(S") of paths on S" which join a given point x to its antipode A(x) = -x together with the natural involution of P(S").It is shown that co-ind P(S") = n for n ^ 1, 2, 4 or 8. Next we consider the space V(S") of unit tangent vectors to S", with its involution (the antipodal map on each fibre), and show that co-ind V(S") = n for n # 1, 3, or 7 and co-ind V(S") = n -1 for n = 1, 3 or 7. We also compute the co-index of involutions on low dimensional projective spaces.The arguments rely on suspension and Hopf invariant theorems, using particularly the results of J. F. Adams [1] on maps of Hopf invariant one.2. The space of paths P(S").We choose a base point xeS" and we let P(S") denote the space of all paths in S" which join x to its antipode -x.A fixed point free involution on P(S") is given by T(p)(t) = -p(l -t), where p(t) is a point in P(S").In this section we show (2.1) Theorem.For n # 1, 2, 4 or 8, co-ind P(S") = n.We showed this for n > 1 and odd in [2, p. 425] and we conjectured this result as the general case.We see first that co-ind P(S") = n by defining an equivariant map m : P(S") -► S" as m(p(t)) = p(l/2) e S".Now we suppose there is an equivariant map mx : P(S") -> Sn_1.We define an

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡可完成签到 ,获得积分10
4秒前
雪山飞龙发布了新的文献求助10
27秒前
32秒前
34秒前
葵花籽发布了新的文献求助10
48秒前
葵花籽完成签到,获得积分10
59秒前
1分钟前
就绪完成签到,获得积分10
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
1分钟前
就绪发布了新的文献求助10
1分钟前
大个应助dobby026采纳,获得10
1分钟前
muriel完成签到,获得积分0
1分钟前
如歌完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
时老完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
dobby026发布了新的文献求助10
2分钟前
天123完成签到 ,获得积分10
2分钟前
乔杰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
dyuguo3完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
困的晕福福完成签到 ,获得积分10
3分钟前
Eins完成签到 ,获得积分10
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
freyaaaaa应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助ceeray23采纳,获得20
3分钟前
Xixi完成签到 ,获得积分10
3分钟前
4分钟前
雪山飞龙发布了新的文献求助10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554997
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656378
捐赠科研通 4581520
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458533